训练多层神经网络难点 更多内容
  • Standard模型训练

    力,保障用户训练作业的长稳运行 提供训练作业断点续训与增量训练能力,即使训练因某些原因中断,也可以基于checkpoint接续训练,保障需要长时间训练的模型的稳定性和可靠性,避免重头训练耗费的时间与计算成本 支持训练数据使用SFS Turbo文件系统进行数据挂载,训练作业产生的中间和结果等数据可以直接高速写入到SFS

    来自:帮助中心

    查看更多 →

  • 编写训练代码

    编写训练代码 训练模型时引用依赖包,如何创建训练作业? 训练作业常用文件路径是什么? 如何安装C++的依赖库? 训练作业中如何判断文件夹是否复制完毕? 如何在训练中加载部分训练好的参数? 训练作业的启动文件如何获取训练作业中的参数? 训练作业中使用os.system('cd xxx')无法进入相应的文件夹?

    来自:帮助中心

    查看更多 →

  • 训练管理(旧版)

    训练管理(旧版) 训练作业 训练作业参数配置 可视化作业 资源和引擎规格接口 作业状态参考 父主题: 历史API

    来自:帮助中心

    查看更多 →

  • 训练作业

    训练作业 创建训练作业 查询训练作业列表 查询训练作业版本详情 删除训练作业版本 查询训练作业版本列表 创建训练作业版本 停止训练作业版本 更新训练作业描述 删除训练作业 获取训练作业日志的文件名 查询预置算法 查询训练作业日志 父主题: 训练管理(旧版)

    来自:帮助中心

    查看更多 →

  • 训练任务

    训练任务 训练任务 任务队列 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 准备训练数据

    准备训练数据 在创建抽取模型时,需要您提前准备用于训练模型的数据并上传至OBS目录,数据格式为txt文本的自然语言短句。KG服务当前支持的数据类型请参见训练数据类型介绍。 准备数据流程如下: 准备待标注的数据 定义三元组类型(schema) 标注数据 上传至OBS 准备待标注的数据

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 Yaml配置文件参数配置说明 模型NPU卡数、梯度累积值取值表 各个模型训练前文件替换 NPU_Flash_Attn融合算子约束 BF16和FP16说明 录制Profiling 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.910)

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3.910)

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.911)

    来自:帮助中心

    查看更多 →

  • 训练benchmark工具

    训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.911)

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.911)

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.905)

    来自:帮助中心

    查看更多 →

  • 调试与训练

    调试与训练 单机单卡 单机多卡 多机多卡 父主题: 专属资源池训练

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练 使用ModelArts Standard自定义算法实现手写数字识别 基于ModelArts Standard运行GPU训练作业

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)

    来自:帮助中心

    查看更多 →

  • 模型测试

    模型测试 将样例数据中的测试数据集加载至当前学件项目中,进行数据预处理,并基于训练出的模型进行效果验证。 单击界面左下角的“加载数据”,弹出“加载数据”代码框,如图1所示。 需要配置的参数如下所示,其余参数保持默认值即可。 数据集:从下拉框中选择数据集“samples”。 数据集

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    新建训练工程、联邦学习工程、训练服务或超参优化服务。 名称 模型训练名称。 模型训练工程描述 对模型训练工程的描述信息。 创建时间 训练工程、联邦学习工程、训练服务或者超参优化服务的创建时间。 类型 模型训练的类型。 包含如下选项: 模型训练 联邦学习 训练服务 优化服务 创建者 创建训练工程、联邦

    来自:帮助中心

    查看更多 →

  • 训练服务简介

    研发更便捷。训练服务的开发流程如下: 训练服务操作引导如下: 算法管理:负责管理用户上传的符合平台规范的算法。 训练任务:用户选择训练算法和训练数据集创建训练任务进行训练。 模型评测:负责管理评测脚本、评测任务和评测对比任务。 编译管理:包含编译任务和编译镜像。训练产生的模型版本

    来自:帮助中心

    查看更多 →

  • 镜像制作(训练)

    镜像制作(训练) Octopus平台依赖算子镜像内的/bin/bash、stdbuf、tee软件,请确保基础镜像内包含上述软件且能通过PATH找到。 一般情况下,训练与评测定义为同一个引擎,主要包括算法或评测脚本运行所需要的基本依赖环境。用户可使用命令行模式或Dockerfile

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了