盘古大模型

 

盘古大模型致力于深耕行业,打造金融、政务、制造、矿山、气象、铁路等领域行业大模型和能力集,将行业知识know-how与大模型能力相结合,重塑千行百业,成为各组织、企业、个人的专家助手。

 
 

    盘古气候大模型 更多内容
  • 在MaaS应用实践中心查看应用解决方案

    企业搜索 服务、盘古数字人大脑和Dify,为具体的客户应用场景提供一整套解决方案。 KooSearch 企业搜索服务:基于在MaaS开源模型部署的模型API,搭建企业专属方案、LLM驱动的语义搜索、多模态搜索增强。 盘古数字人大脑:基于在MaaS开源模型部署的模型API,升级智能对话解决方案,含智能客服、数字人。

    来自:帮助中心

    查看更多 →

  • 计费概述

    计费概述 关于盘古模型的详细费用信息,敬请咨询华为云售前咨询,我们将为您提供专业的解答和支持。 通过阅读本文,您可以快速了解盘古模型的计费模式、计费项、续费、欠费等主要计费信息。 计费模式 盘古模型提供包周期计费、按需计费两种计费模式,以满足不同场景下的用户需求。关于计费模式的详细介绍请参见计费模式。

    来自:帮助中心

    查看更多 →

  • 数据保护技术

    数据保护技术 盘古模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数

    来自:帮助中心

    查看更多 →

  • 使用API调用NLP大模型

    使用API调用NLP模型 模型部署成功后,可以通过“文本对话”API调用NLP模型。 表1 NLP模型API清单 API分类 API访问路径(URI) 文本对话 /v1/{project_id}/deployments/{deployment_id}/chat/completions

    来自:帮助中心

    查看更多 →

  • LLM大语言模型训练推理

    主流开源模型基于Standard适配PyTorch NPU训练指导(6.3.906) 主流开源模型基于Standard适配PyTorch NPU推理指导(6.3.906) 主流开源模型基于DevServer适配PyTorch NPU训练指导(6.3.905) 主流开源模型基于DevServer适配PyTorch

    来自:帮助中心

    查看更多 →

  • 数据工程使用流程

    集格式转换。 默认格式:平台默认的格式。 盘古格式:训练盘古模型时,需要进行数据集格式转换。当前仅文本类、图片类数据集支持转换为盘古格式。 自定义格式:文本类数据集可以使用自定义脚本进行数据格式转换。 父主题: 使用数据工程准备与处理数据集

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    模型开发基本流程介绍 模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于 自然语言处理 (NLP)等领域。开发一个模型的流程可以分为以下几个主要步骤: 数据集准备:模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。

    来自:帮助中心

    查看更多 →

  • 管理NLP大模型部署任务

    管理NLP模型部署任务 模型更新、修改部署 成功创建部署任务后,如需修改已部署的模型或配置信息,可以在详情页面单击右上角的“模型更新”或“修改部署”进行调整。更新模型时可以替换模型,但在修改部署时模型不可替换。 在“模型更新”或“修改部署”后进行升级操作时,可选择全量升级或滚动升级两种方式:

    来自:帮助中心

    查看更多 →

  • 数据集发布场景介绍

    支持发布的数据格式 ModelArts Studio模型开发平台支持将文本类、图片类数据集发布为三种格式: 默认格式:适用于广泛的数据使用场景,满足大多数模型训练的标准需求。 盘古格式:专为盘古模型训练设计的格式,确保数据集在盘古模型训练中的兼容性和一致性。 自定义格式:适用于文本

    来自:帮助中心

    查看更多 →

  • 管理盘古数据资产

    在“数据发布”页签可查看数据资产,并可对数据集进行删除操作。单击数据集名称可进入详情页面查看数据集的基础信息和操作概览。 图1 查看数据资产 父主题: 管理盘古模型空间资产

    来自:帮助中心

    查看更多 →

  • 准备工作

    准备工作 申请试用盘古模型服务 配置服务访问授权 创建并管理盘古工作空间

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型部署任务

    创建科学计算模型部署任务 模型训练完成后,可以启动模型的部署操作。 登录ModelArts Studio模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,模型类型选择“科学计算模型”,参考表1完成部署参数设置,启动模型部署。

    来自:帮助中心

    查看更多 →

  • 使用API调用科学计算大模型

    使用API调用科学计算模型 使用API调用科学计算模型步骤如下: 登录ModelArts Studio模型开发平台,进入所需空间。 单击左侧“模型开发 > 模型部署”。 若调用已部署的模型,单击状态为“运行中”的模型名称,在“详情”页签,可获取API的URL。 图1 获取已部署模型的调用路径

    来自:帮助中心

    查看更多 →

  • 查看NLP大模型部署任务详情

    查看NLP模型部署任务详情 部署任务创建成功后,可以在“模型开发 > 模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看模

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    --max-model-len的值。 config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 父主题: 主流开源模型基于DevServer适配PyTorch NPU推理指导(6.3

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    附录:模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909)

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源模型基于DevServer适配PyTorch NPU推理指导(6.3.908)

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    附录:模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    el.py中的main函数,保存模型时将safe_serialization指定为False int8_model.save_pretrained(output_path,safe_serialization=False) 父主题: 主流开源模型基于Lite Cluster适配PyTorch

    来自:帮助中心

    查看更多 →

  • 创建和管理KooSearch模型服务(可选)

    NLP模型-云底座:通过华为云提供的盘古nlp模型访问方式。 NLP模型-昇腾云:通过昇腾云的MAAS服务提供的nlp模型访问方式。如果选择此模型进行问答,建议设置模型生成最大新词数不超过512。 NLP模型-裸机:通过裸机部署提供的盘古nlp模型访问方式。 搜索Embedding模型:搜索向量化模型,支持将文本转化成向量。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了