政府及公共事业解决方案

在推进“放管服”改革,优化营商环境,科技兴警等工作中,政府积极探索如何将云计算,大数据、人工智能和区块链等新技术与政府、公共事业融合发展。通过全栈专属云,微服务,人工智能和大数据等服务,提供智慧交通管控,视频上云,天地图服务,气象短临预报,遥感数据共享等应用服务,帮助政府及公共事业的服务能力向移动化、精准化、智能化发展

专业咨询服务 ∙ 助您上云无忧
专属顾问会在1个工作日内联系您
 请填写联系人
 请填写真实电话
提交

    盘古气象大模型 更多内容
  • 创建科学计算大模型部署任务

    创建科学计算模型部署任务 模型训练完成后,可以启动模型的部署操作。 登录ModelArts Studio模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,模型类型选择“科学计算模型”,参考表1完成部署参数设置,启动模型部署。

    来自:帮助中心

    查看更多 →

  • 管理盘古数据资产

    在“数据发布”页签可查看数据资产,并可对数据集进行删除操作。单击数据集名称可进入详情页面查看数据集的基础信息和操作概览。 图1 查看数据资产 父主题: 管理盘古模型空间资产

    来自:帮助中心

    查看更多 →

  • 欢迎使用盘古辅助制药平台

    欢迎使用盘古辅助制药平台 盘古辅助制药平台是以盘古药物模型为基础打造的一站式药研平台,助力药物研发效率提升60%+。平台提供靶点发现,苗头化合物发现,先导化合物优化全流程药研所需功能。同时基于云原生的软硬件一体化加速,大大提升虚拟筛选和分子动力学模拟计算效率。 全平台无需软硬件

    来自:帮助中心

    查看更多 →

  • 产品优势

    ModelArts Studio模型开发平台预置多种数据处理AI算子,多种标注工具,满足用户多任务多场景需求,提高开发/标注效率>10X。 0代码,模型开发“简” ModelArts Studio模型开发平台预置盘古系列预训练模型,支持快速开发,全程0代码开发,极大降低模型开发门槛。 功能强,Agent开发“好”

    来自:帮助中心

    查看更多 →

  • 数据集加工场景介绍

    复杂的业务需求。 增强模型性能:通过合适的数据加工,可以提高数据的可用性,进而提升模型的训练效果,使其具备更高的精度和鲁棒性。 总体而言,数据加工不仅帮助用户提升数据处理效率,还通过优化数据质量,支持高效的模型训练,帮助用户快速构建高质量的数据集,推动模型的成功开发。 支持数据加工的数据集类型

    来自:帮助中心

    查看更多 →

  • 提示词工程介绍

    提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了模型通用的提示工程技巧以及盘古模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古模型的提示工程。 本文的方法论及技巧部分使用了较为简单的任务作为

    来自:帮助中心

    查看更多 →

  • 创建和管理KooSearch模型服务(可选)

    NLP模型-云底座:通过华为云提供的盘古nlp模型访问方式。 NLP模型-昇腾云:通过昇腾云的MAAS服务提供的nlp模型访问方式。如果选择此模型进行问答,建议设置模型生成最大新词数不超过512。 NLP模型-裸机:通过裸机部署提供的盘古nlp模型访问方式。 搜索Embedding模型:搜索向量化模型,支持将文本转化成向量。

    来自:帮助中心

    查看更多 →

  • 使用API调用科学计算大模型

    使用API调用科学计算模型 使用API调用科学计算模型步骤如下: 登录ModelArts Studio模型开发平台,进入所需空间。 单击左侧“模型开发 > 模型部署”。 若调用已部署的模型,单击状态为“运行中”的模型名称,在“详情”页签,可获取API的URL。 图1 获取已部署模型的调用路径

    来自:帮助中心

    查看更多 →

  • 查看NLP大模型部署任务详情

    查看NLP模型部署任务详情 部署任务创建成功后,可以在“模型开发 > 模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看模

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909)

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源模型基于DevServer适配PyTorch NPU推理指导(6.3.908)

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    附录:模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    el.py中的main函数,保存模型时将safe_serialization指定为False int8_model.save_pretrained(output_path,safe_serialization=False) 父主题: 主流开源模型基于Lite Cluster适配PyTorch

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    --max-model-len的值。 config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 父主题: 主流开源模型基于DevServer适配PyTorch NPU推理指导(6.3

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    附录:模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len

    来自:帮助中心

    查看更多 →

  • 盘古辅助药物

    盘古辅助药物 为什么下载的部分靶点文件,显示不完整 CSS 常见问题

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型评估结果很好,但实际场景表现很差

    为什么微调后的盘古模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    el.py中的main函数,保存模型时将safe_serialization指定为False int8_model.save_pretrained(output_path,safe_serialization=False) 父主题: 主流开源模型基于Server适配PyTorch

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    “微调”。模型选择完成后,参考表1完成训练参数设置。 表1 NLP模型微调参数说明 参数分类 训练参数 参数说明 训练配置 模型来源 选择“盘古模型模型类型 选择“NLP模型”。 训练类型 选择“微调”。 训练目标 全量微调:在模型有监督微调过程中,对模型的全部参数进

    来自:帮助中心

    查看更多 →

  • 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同

    为什么在微调后的盘古模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程

    来自:帮助中心

    查看更多 →

  • 管理NLP大模型训练任务

    管理NLP模型训练任务 在训练任务列表中,任务创建者可以对创建好的任务进行编辑、启动、克隆(复制训练任务)、重试(重新训练任务)和删除操作。 登录ModelArts Studio模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“模型开发 > 模型训练”,进入模型训练页面,可进行如下操作:

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了