云数据库 RDS for MySQL

 

云数据库 RDS for MySQL拥有即开即用、稳定可靠、安全运行、弹性伸缩、轻松管理、经济实用等特点,让您更加专注业务发展。

 
 

    规则引擎sql表设计 更多内容
  • ClickHouse宽表设计

    ClickHouse宽设计 ClickHouse宽设计原则 ClickHouse字段设计 ClickHouse本地设计 ClickHouse分布式设计 ClickHouse分区设计 ClickHouse索引设计 父主题: ClickHouse应用开发规范

    来自:帮助中心

    查看更多 →

  • GaussDB(DWS)表设计规则

    支持的并发度。通过对关联条件和分组条件的仔细设计,能够尽可能的减少不必要的数据shuffle。 选择存储方案 【建议】的存储类型是定义设计的第一步,用户业务类型是决定的存储类型的主要因素,存储类型的选择依据请参考1。 1 的存储类型及场景 存储模型 优点 缺点 适用场景

    来自:帮助中心

    查看更多 →

  • GaussDB(DWS)表设计规则

    【建议】的分布方式的选择一般遵循以下原则: 2 的分布方式及使用场景 分布方式 描述 适用场景 Hash 数据通过Hash方式散列到集群中的所有DN上。 数据量较大的事实。 Replication 集群中每一个DN都有一份全量数据。 维度、数据量较小的事实。 Roundrobin

    来自:帮助中心

    查看更多 →

  • GaussDB(for MySQL)索引设计规范

    index:示使用索引,如果只有 Using index,说明没有查询到数据,只用索引即完成了这个查询,这种情况为覆盖索引。如果同时出现Using where,代使用索引来查找读取记录, 也是可以用到索引的,但是需要查询到数据。 Using where:示条件查询,如

    来自:帮助中心

    查看更多 →

  • 创建规则引擎目的端

    创建规则引擎目的端 功能介绍 在ROMA Connect创建规则引擎目的端。 URI POST /v1/{project_id}/link/instances/{instance_id}/rules/destinations 1 参数说明 名称 类型 是否必填 描述 project_id

    来自:帮助中心

    查看更多 →

  • Hudi表模型设计规范

    流式计算采用MOR。 流式计算为低时延的实时计算,需要高性能的流式读写能力,在Hudi中存在的MOR和COW两种模型中,MOR的流式读写性能相对较好,因此在流式计算场景下采用MOR模型。关于MOR在读写性能的对比关系如下: 对比维度 MOR COW 流式写 高 低 流式读

    来自:帮助中心

    查看更多 →

  • 视图和关联表设计

    视图和关联设计 视图设计 【建议】除非视图之间存在强依赖关系,否则不建议视图嵌套。 【建议】视图定义中尽量避免排序操作。 关联设计 【建议】之间的关联字段应该尽量少。 【建议】关联字段的数据类型应该保持一致。 【建议】关联字段在命名上,应该可以明显体现出关联关系。例如,采用同样名称来命名。

    来自:帮助中心

    查看更多 →

  • ClickHouse宽表设计原则

    ClickHouse宽设计原则 宽设计原则 由于ClickHouse的宽查询性能较优,且当前ClickHouse可支持上万列的宽横向扩展。 在大部分场景下,有大join以及多join的场景,且多个join的数据变化更新频率较低,这种情况,建议对多个join查询逻辑提

    来自:帮助中心

    查看更多 →

  • ClickHouse本地表设计

    ClickHouse本地设计 规则 单(分布式)的记录数不要超过万亿,对于万亿以上的查询,性能较差,且集群维护难度变大。单(本地)不超过百亿。 设计都要考虑到数据的生命周期管理,需要进行TTL属性设置或定期老化清理分区数据。 单的字段建议不要超过5000列。

    来自:帮助中心

    查看更多 →

  • Hudi表索引设计规范

    Hudi索引设计规范 规则 禁止修改索引类型。 Hudi的索引会决定数据存储方式,随意修改索引类型会导致中已有的存量数据与新增数据之间出现数据重复和数据准确性问题。常见的索引类型如下: 布隆索引:Spark引擎独有索引,采用bloomfiter机制,将布隆索引内容写入到Parquet文件的footer中。

    来自:帮助中心

    查看更多 →

  • 视图和关联表设计

    视图和关联设计 视图设计 【建议】除非视图之间存在强依赖关系,否则不建议视图嵌套。 【建议】视图定义中尽量避免排序操作。 关联设计 【建议】之间的关联字段应该尽量少。 【建议】关联字段的数据类型应该保持一致。 【建议】关联字段在命名上,应该可以明显体现出关联关系。例如,采用同样名称来命名。

    来自:帮助中心

    查看更多 →

  • 视图和关联表设计

    视图和关联设计 视图设计 除非视图之间存在强依赖关系,否则不建议视图嵌套。 视图定义中尽量避免排序操作。 关联设计 之间的关联字段应该尽量少。 关联字段的数据类型应该保持一致。 关联字段在命名上,应该可以明显体现出关联关系。例如,采用同样名称来命名。 父主题: 数据库对象设计

    来自:帮助中心

    查看更多 →

  • 视图和关联表设计

    视图和关联设计 视图设计 除非视图之间存在强依赖关系,否则不建议视图嵌套。 视图定义中尽量避免排序操作。 关联设计 之间的关联字段应该尽量少。 关联字段的数据类型应该保持一致。 关联字段在命名上,应该可以明显体现出关联关系。例如,采用同样名称来命名。 父主题: 数据库对象设计

    来自:帮助中心

    查看更多 →

  • 视图和关联表设计

    视图和关联设计 视图设计 除非视图之间存在强依赖关系,否则不建议视图嵌套。 视图定义中尽量避免排序操作。 关联设计 之间的关联字段应该尽量少。 关联字段的数据类型应该保持一致。 关联字段在命名上,应该可以明显体现出关联关系。例如,采用同样名称来命名。 父主题: 数据库对象设计

    来自:帮助中心

    查看更多 →

  • Hudi表分区设计规范

    议使用。 建议 事实采用日期分区,维度采用非分区或者大颗粒度的日期分区 是否采用分区要根据的总数据量、增量和使用方式来决定。从的使用属性看事实和维度具有的特点: 事实:数据总量大,增量大,数据读取多以日期做切分,读取一定时间段的数据。 维度:总量相对小,增量小

    来自:帮助中心

    查看更多 →

  • 视图和关联表设计

    视图和关联设计 视图设计 除非视图之间存在强依赖关系,否则不建议视图嵌套。 视图定义中尽量避免排序操作。 关联设计 之间的关联字段应该尽量少。 关联字段的数据类型应该保持一致。 关联字段在命名上,应该可以明显体现出关联关系。例如,采用同样名称来命名。 父主题: 数据库对象设计

    来自:帮助中心

    查看更多 →

  • TaurusDB库表设计规范

    避免使用分区,如有需要,可以使用多个独立的代替。 分区的缺点: DDL操作需要锁定所有分区,导致所有分区上操作都被阻塞。 当数据量较大时,对分区进行DDL或其他运维操作难度大风险高。 分区使用较少,存在未知风险。 当单台 服务器 性能无法满足时,对分区进行分拆的成本较高。

    来自:帮助中心

    查看更多 →

  • 规则引擎(联通用户专用)

    设备行为:单击“添加”,可以选择设置条件的设备,支持对某一设备或者某一类设备进行设置。 条件类型: 设备:示满足条件的数据是由单个设备上报到平台。 设备类型:示满足条件的数据是由选择的某一设备类型的设备上报到平台。 设备群组:示满足条件的数据是由所选设备群组的设备上报到平台。 选择设备模型:选择满足条件

    来自:帮助中心

    查看更多 →

  • 流程设计

    图1 流程设计1 单击导入,单击下载流程模板。 图2 流程设计2 下载模板如下 1 模板 上级流程 *名称 *责任人 描述 - - - - - - - - 模板参数说明如下: 2 模板参数说明 参数名 说明 上级流程 第一层的流程,其上级流程为空,不用填。 非第一层的流程,其上级

    来自:帮助中心

    查看更多 →

  • 设计原则

    设计原则 以下是常用的性能优化指导原则: 中心化原则:识别支配性工作量负载功能,并使其处理过程最小化,把注意力集中在对性能影响最大的部分进行提升。 本地化原则:选择靠近的活动、功能和结果的资源;避免通过间接的方式去达到目的,导致通信量或者处理量大辐增加,性能大辐下降。 共享资源:

    来自:帮助中心

    查看更多 →

  • 设计优化

    设计优化 PERF05-01 设计优化 父主题: PERF05 性能优化

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了