企业物联网分会场

构建万物互联智能世界,物联网流量服务低至1折,设备上云包年71折起

 

    AIoT智能家居评测 更多内容
  • 流程指引

    创建镜像仓库 仿真服务 算法管理 在创建任务前,需要创建算法,用户可从本地上传容器镜像。 创建仿真算法 评测管理 支持内置评测配置和自定义评测镜像,对仿真任务中的算法展开评测。 创建评测 场景管理 创建仿真场景,仿真场景库、测试套件、测试用例和逻辑泛化场景用于仿真开发。 创建仿真场景 任务管理

    来自:帮助中心

    查看更多 →

  • 支持云审计的关键操作

    downloadAlgorithmMeta 创建评测镜像 octopus createSimEvaluationImages 更新评测镜像 octopus updateSimEvaluationImages 删除评测镜像 octopus deleteSimEvaluationImages 创建评测 octopus

    来自:帮助中心

    查看更多 →

  • 如何评估微调后的盘古大模型是否正常

    不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人工评测:您可以采用人工评测的方式,参照目标任务构造评测集,通过横向或纵向评估评测集的方式来验证模型效果。 父主题: 大模型微调训练类问题

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    是对整体进行评测,少一个字符就可能会导致判断错误)时,max_out_len设置建议长一些,比如512,至少包含第一个回答的全部字段。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度。 eval_datasets:评测数据集和评测方法,比如c

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    是对整体进行评测,少一个字符就可能会导致判断错误)时,max_out_len设置建议长一些,比如512,至少包含第一个回答的全部字段。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度。 eval_datasets:评测数据集和评测方法,比如c

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──convert_awq_to_npu.py # awq权重转换脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 任务队列

    任务队列 评测任务在创建之后,可在此查看任务队列,同时支持对任务优先级的调整。 在左侧菜单栏中单击“训练服务 > 模型评测”。 选择“任务队列”页签,可查看任务。 图1 任务队列 评测任务队列相关操作 在“任务队列”页签,还可以进行以下操作。 表1 评测任务队列相关操作 任务 操作步骤

    来自:帮助中心

    查看更多 →

  • 仿真服务简介

    保存等操作。 算法管理:用于对接客户的上云算法,并支持算法的版本级管理,并可自动化触发关联的批量算法。 评测管理:支持内置评测配置和自定义评测镜像,对仿真任务中的算法展开评测。 场景管理:包含场景、场景库、逻辑场景、逻辑场景库、测试用例、测试套件等。支持页面上传、泛化、在线仿真编

    来自:帮助中心

    查看更多 →

  • CCE集群

    一般情况下,训练与评测定义为同一个引擎,主要包括算法或评测脚本运行所需要的基本依赖环境。用户可使用命令行模式或Dockerfile模式进行构建。以训练、评测镜像为例,一般的镜像制作Dockerfile示例如下(xxx替换为实际路径): # 载入基础镜像,训练或评测引擎一般需包含cu

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 营销宣传风格文案

    从科技创新的角度来看,家用机器人在许多方面都具有创新性。 它采用了简洁、时尚的外观设计,不仅美观大方,而且易于使用和操作。 它可以与智能家居设备进行连接,实现智能家居控制; 在引领科技潮流方面,家用机器人注重持续的技术更新和升级。 它将不断地推出新功能、新技术和新服务,以满足大家不断变化的需求。

    来自:帮助中心

    查看更多 →

  • 模型数据集支持

    模型数据集支持 模型评测支持多种数据集格式,包括Octopus格式和部分常见开源数据集格式,以下为各类别模型的数据集支持列表和示例。 目标检测2D 目标检测3D 目标追踪2D 目标追踪3D 语义分割2D 语义分割3D 车道线检测 分类 父主题: 模型评测

    来自:帮助中心

    查看更多 →

  • 实施步骤

    化解决方案的场景下,天宽也会开发自定义评测脚本,确保评测方案能够全面覆盖项目的特殊需求,实现对模型表现的全方位评估和优化。通过这一系统化的评测流程,天宽确保模型能够在实际业务中达到最佳性能。 图9 精度对比 实施模型能力评测时,首先运行评测测试,执行模型在预设的测试集上的推理,并

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    max_workers:请求的最大线程数,默认为1。 service_name:服务名称,保存评测结果时创建目录,示例为:llama2-13b-chat-test。 eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。 service_url:成功部署推理

    来自:帮助中心

    查看更多 →

  • 镜像制作(训练)

    一般情况下,训练与评测定义为同一个引擎,主要包括算法或评测脚本运行所需要的基本依赖环境。用户可使用命令行模式或Dockerfile模式进行构建。以训练、评测镜像为例,一般的镜像制作Dockerfile示例如下(xxx替换为实际路径): # 载入基础镜像,训练或评测引擎一般需包含cu

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──llm_tools #推理工具包 ├──llm_evaluation #推理评测代码包 ├──benchmark_eval # 精度评测 ├── config ├── config.json

    来自:帮助中心

    查看更多 →

  • 简介

    简介 Huawei LiteOS是华为面向IoT领域,构建的轻量级物联网操作系统,可广泛应用于智能家居、个人穿戴、车联网、城市公共服务、制造业等领域。 Huawei LiteOS发布于2015年5月的华为网络大会上。自开源社区发布以来,围绕 NB-IoT 物联网市场从技术、生态、

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了