网络货运平台解决方案

整合配置运输资源,帮助企业构建专业物流服务能力和精细化运营体系

 
 
专业咨询服务 ∙ 助您上云无忧
专属顾问会在1个工作日内联系您
 请填写联系人
 请填写真实电话
提交

    华为云服务定位手机精度 更多内容
  • 修改云手机定位

    修改云手机定位 功能介绍 影响手机定位功能的信息分为四类,分别为GPS经纬度数据、基站信息数据、WiFi信息及IP地址,云手机支持其中的GPS经纬度数据和WiFi信息模拟,用户可根据业务场景,选择其中一种或多种进行定位模拟。 定位模式 精度 常见场景 GPS 高 地图、导航等需要持续定位的应用软件

    来自:帮助中心

    查看更多 →

  • 精度校验

    在迁移到NPU环境下训练发现以上问题时,说明精度可能存在偏差,需要进一步做精度调优。下文将分别阐述精度诊断的整体思路和如何借助精度工具进行精度问题的定位。 父主题: PyTorch迁移精度调优

    来自:帮助中心

    查看更多 →

  • 精度函数

    精度函数 HLL(HyperLogLog)主要存在三种模式Explicit,Sparse,Full。当数据规模比较小的时候会使用Explicit模式和Sparse模式, 这两种模式在计算结果上基本上没有误差。 随着distinct值越来越多,就会转换成Full模式,但结果也会存在

    来自:帮助中心

    查看更多 →

  • 精度校验

    精度校验 转换模型后执行推理前,可以使用benchmark工具对MindSpore Lite云侧推理模型进行基准测试。它不仅可以对MindSpore Lite云侧推理模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 精度测试 benc

    来自:帮助中心

    查看更多 →

  • 精度对齐

    精度对齐 长训Loss比对结果 使用Msprobe工具分析偏差 Loss对齐结果 父主题: Dit模型Pytorch迁移与精度性能调优

    来自:帮助中心

    查看更多 →

  • 定位

    定位 定位组件用于根据定位获取当前所在位置,仅支持移动端设备使用。 在表单开发页面,从“数据组件”中,拖拽“定位”组件至表单设计区域,如图1。 图1 定位 显示名称:该组件在页面呈现给用户的名称,可以设置为中文,也可以设置为英文。 验证:对该字段进行一些限制。 必填:设置为“必填”,表示该字段必须配置。

    来自:帮助中心

    查看更多 →

  • 数据精度

    数据精度 原始成本的数据精度和账单金额一致。 摊销成本需要按照四舍五入进行保留小数,因此摊销成本会存在微小的精度差异: 成本中心页面上展示的金额,均按照四舍五入规则,保留2位小数; 导出的成本明细数据,会根据成本数据的原始精度,保留8位小数。 需要进行分摊的数据包括: 包年/包月的订单金额。

    来自:帮助中心

    查看更多 →

  • 精度函数

    精度函数 HLL(HyperLogLog)主要存在三种模式Explicit,Sparse,Full。当数据规模比较小的时候会使用Explicit模式和Sparse模式, 这两种模式在计算结果上基本上没有误差。 随着distinct值越来越多,就会转换成Full模式,但结果也会存在

    来自:帮助中心

    查看更多 →

  • 精度对齐

    精度对齐 精度问题是指模型从GPU设备迁移到昇腾NPU设备之后由于软硬件差异引入的精度问题。根据是否在单卡环境下,可分为单卡精度问题与多卡精度问题。多卡相对于单卡,会有卡与卡之间的通信,这可能也是精度偏差的一种来源。所以多卡的精度对齐问题相对于单卡会更复杂。不过针对多卡的精度问题

    来自:帮助中心

    查看更多 →

  • 时间精度(time

    时间精度(time_confidence) 数值 含义 0 不具备或不可用 1 100 2 50 3 20 4 10 5 2 6 1 7 0.5 8 0.2 9 0.1 10 0.05 11 0.02 12 0.01 13 0.005 14 0.002 15 0.001 16 0

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-3rdLLM-xxx.zip的llm_tools/llm_evaluation(6.3.905版本)目

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,建议在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。若需要在生产环境中进行推理精度测试,请通过调用接口的方式进行测试。 Step1 执行精度测试 精度测试需要数据集进行测试。推荐公共数据集mmlu

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。

    来自:帮助中心

    查看更多 →

  • 训练精度测试

    训练精度测试 流程图 训练精度测试流程图如下图所示: 图1 训练精度测试流程图 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,按自己实际情况。 benchmark-cli train <cfgs_yaml_file> <model_name> <run_type>

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证

    来自:帮助中心

    查看更多 →

  • 精度问题处理

    精度问题处理 设置高精度并重新转换模型 在转换模型时,默认采用的精度模式是fp16,如果转换得到的模型和标杆数据的精度差异比较大,可以使用fp32精度模式提升模型的精度精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC

    来自:帮助中心

    查看更多 →

  • 训练精度测试

    训练精度测试 流程图 训练精度测试流程图如下图所示: 图1 训练精度测试流程图 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,按自己实际情况。 benchmark-cli train <cfgs_yaml_file> <model_name> <run_type>

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了