弹性云服务器 ECS

 

弹性云服务器(Elastic Cloud Server)是一种可随时自助获取、可弹性伸缩的云服务器,帮助用户打造可靠、安全、灵活、高效的应用环境,确保服务持久稳定运行,提升运维效率

 
 

    服务器cpu停止工作原理 更多内容
  • Spark基本原理

    Spark基本原理 Spark简介 Spark是一个开源的,并行数据处理框架,能够帮助用户简单、快速的开发大数据应用,对数据进行离线处理、流式处理、交互式分析等。 Spark提供了一个快速的计算、写入及交互式查询的框架。相比于Hadoop,Spark拥有明显的性能优势。Spark

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM 将根据源端的字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时的字段类型映射 CDM在 数据仓库 服务(Data Warehouse Service,简称DWS)中自动建表时,DWS的表与源表的字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • FederatedHPA工作原理

    FederatedHPA工作原理 如何计算指标数据? 指标数据分为系统指标与自定义指标,计算方法如下: 系统指标 主要包括CPU利用率和内存利用率两个指标,系统指标的查询与监控依赖Metrics API。例如,您希望控制工作负载对CPU资源的利用率在合理水平,可基于CPU利用率指标为其创建FederatedHPA策略。

    来自:帮助中心

    查看更多 →

  • 背景及原理(服务编排)

    背景及原理(服务编排) 华为云Astro轻应用的服务编排,支持对逻辑判断组件、数据处理组件,以及脚本、子服务编排、商业对象等进行可视化组合编排,实现丰富的业务功能。 了解服务编排 在传统的开发中程序员一般是基于代码进行开发,程序员需要学习内容较多,开发效率相对低一些,开发门槛也高

    来自:帮助中心

    查看更多 →

  • 什么是鲲鹏CPU架构与x86 CPU架构

    什么是鲲鹏CPU架构与x86 CPU架构 弹性云 服务器 实例主要包含两种架构,x86 CPU架构和鲲鹏CPU架构。 x86 CPU架构 采用复杂指令集CISC(Complex Instruction Set Computer),CISC是一种计算机体系结构,其中每个指令可以执行一些

    来自:帮助中心

    查看更多 →

  • 如何设置裸金属服务器CPU频率调节模式?

    如何设置裸金属服务器CPU频率调节模式? 常见的CPU频率调节模式有performance、powersave、ondemand等,用户可以根据裸金属服务器的使用场景选择合适的CPU频率调节模式。 可以通过以下操作将CPU频率调节模式设置成performance: Red Hat

    来自:帮助中心

    查看更多 →

  • ALM-15795031 CPU繁忙

    原因74300:单板上数据面CPU使用率超过告警阈值,数据面CPU使用率包含基础转发业务和其他数据面业务CPU使用率。 处理步骤 原因74299:在不区分业务的情况下,单板CPU利用率超过设定的过载门限。 执行display cpu-usage命令查看CPU使用率及其过载门限值。 如果CPU使用率高于过载门限值,则请执行步骤2。

    来自:帮助中心

    查看更多 →

  • 如何修改CPU的阈值?

    如何修改CPU的阈值? SAP应用弹性伸缩安装后,默认CPU的阈值为85%,当CPU的使用率超过85%,自动扩展实例,根据实际业务可修改CPU的阈值,保障系统稳定运行。 操作步骤 登录公有云管理控制台。 在公有云管理控制台首页上,选择“服务列表 > 管理与部署 > 云监控”。 在左侧的导航栏,单击“告警

    来自:帮助中心

    查看更多 →

  • Ranger基本原理

    Ranger基本原理 Apache Ranger提供一个集中式安全管理框架,提供统一授权和统一审计能力。它可以对整个Hadoop生态中如HDFS、Hive、HBase、Kafka、Storm等进行细粒度的数据访问控制。用户可以利用Ranger提供的前端WebUI控制台通过配置相关策略来控制用户对这些组件的访问权限

    来自:帮助中心

    查看更多 →

  • ZooKeeper基本原理

    ZooKeeper基本原理 ZooKeeper简介 ZooKeeper是一个分布式、高可用性的协调服务。在大数据产品中主要提供两个功能: 帮助系统避免单点故障,建立可靠的应用程序。 提供分布式协作服务和维护配置信息。 ZooKeeper结构 ZooKeeper集群中的节点分为三种

    来自:帮助中心

    查看更多 →

  • CPU积分计算方法

    CPU积分计算方法 什么是CPU积分 CPU积分是一种用来衡量 云服务器 计算、存储以及网络配置利用率的方式。云服务器利用CPU积分机制保证云服务器基准性能,解决超分云服务器长期占用CPU资源的问题。 使用CPU积分机制的 弹性云服务器 适用于平时CPU负载不高、但突发时可接受因积分不足

    来自:帮助中心

    查看更多 →

  • 并行查询简介

    。并行查询的基本实现原理是将查询任务进行切分并分发到多个CPU核上进行计算,充分利用CPU的多核计算资源来缩短查询时间。并行查询的性能提升倍数理论上与CPU的核数正相关,也就是说并行度越高能够使用的CPU核数就越多,性能提升的倍数也就越高。 下图是使用CPU多核资源并行计算一个表

    来自:帮助中心

    查看更多 →

  • Flume基本原理

    个JVM进程,同一台服务器可以有多个Agent。收集节点(Agent1,2,3)负责处理日志,汇聚节点(Agent4)负责写入HDFS,每个收集节点的Agent可以选择多个汇聚节点,这样可以实现负载均衡。 图3 Flume级联结构图 Flume的架构和详细原理介绍,请参见:https://flume

    来自:帮助中心

    查看更多 →

  • Manager基本原理

    Manager基本原理 Manager功能 Manager是 MRS 的运维管理系统,为部署在集群内的服务提供统一的集群管理能力。 Manager支持大规模集群的性能监控、告警、用户管理、权限管理、审计、服务管理、健康检查、日志采集等功能。 Manager结构 Manager的整体逻辑架构如图1所示。

    来自:帮助中心

    查看更多 →

  • CronFederatedHPA工作原理

    CronFederatedHPA工作原理 CronFederatedHPA的工作原理如图1。创建CronFederatedHPA策略时,可以设定一个具体的时间,基于设定的时间调整HPA策略的最大和最小Pod数,也可以直接定时调整工作负载中的Pod数量。 图1 CronFederatedHPA工作原理 单独使用CronFederatedHPA

    来自:帮助中心

    查看更多 →

  • IoTDB基本原理

    TDB特指其中的时间序列数据库组件。 图1 IoTDB结构 用户可以通过JDBC/Session将来自设备传感器上采集的时序数据和服务器负载、CPU内存等系统状态数据、消息队列中的时序数据、应用程序的时序数据或者其他数据库中的时序数据导入到本地或者远程的IoTDB中。用户还可以将

    来自:帮助中心

    查看更多 →

  • ClickHouse基本原理

    ClickHouse利用CPU的SIMD指令实现了向量化执行。SIMD的全称是Single Instruction Multiple Data,即用单条指令操作多条数据,通过数据并行以提高性能的一种实现方式 ( 其他的还有指令级并行和线程级并行 ),它的原理是在CPU寄存器层面实现数据的并行操作。

    来自:帮助中心

    查看更多 →

  • 内网采集权限与原理

    权限要求:需要管理员级别权限的账号导出包含必要访问凭证的文件。 采集原理:利用kspider工具进行数据采集。 vCenter采集 权限要求:需要管理员账号,该账号应具备对vCenter环境中所有虚拟机的完全访问权限。 采集原理:通过VSphere SDK提供的资源枚举能力,采集到资源的列表及详细数据。

    来自:帮助中心

    查看更多 →

  • 增强型CPU管理策略

    时,会自动分配到其他利用率较低的CPU上,进而保障了应用的响应能力。 开启增强型CPU管理策略时,应用性能优于不开启CPU管理策略(none),但弱于静态CPU管理策略(static)。 应用分配的优先使用的CPU并不会被独占,仍处于共享的CPU池中。因此在该Pod处于业务波谷时

    来自:帮助中心

    查看更多 →

  • 如何解决“源站服务器CPU使用率高达100%”问题?

    如何解决“源站服务器CPU使用率高达100%”问题? 问题现象 网站遭受攻击,网站已接入WAF,但防护没起作用,源站服务器CPU使用率高达100%,怎么办? 可能原因 网站可能遭受了CC攻击。 当发现网站处理速度下降,网络带宽占用过高时,很有可能已经遭受CC攻击,此时可查看Web

    来自:帮助中心

    查看更多 →

  • 并行查询简介

    。并行查询的基本实现原理是将查询任务进行切分并分发到多个CPU核上进行计算,充分利用CPU的多核计算资源来缩短查询时间。并行查询的性能提升倍数理论上与CPU的核数正相关,也就是说并行度越高能够使用的CPU核数就越多,性能提升的倍数也就越高。 下图是使用CPU多核资源并行计算一个表

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了
提示

您即将访问非华为云网站,请注意账号财产安全