云数据库 RDS for MySQL

 

云数据库 RDS for MySQL拥有即开即用、稳定可靠、安全运行、弹性伸缩、轻松管理、经济实用等特点,让您更加专注业务发展。

 
 

    excel数据库原理 更多内容
  • 导出SQL查询结果到Excel出现乱码

    导出SQL查询结果到Excel出现乱码 编码导致出现乱码,默认是utf8,需要在导出的Excel中,将默认编码转换为Unicode。 父主题: 数据库基本使用

    来自:帮助中心

    查看更多 →

  • 导出SQL查询结果到Excel出现乱码

    导出SQL查询结果到Excel出现乱码 编码导致出现乱码,默认是utf8,需要在导出的Excel中,将默认编码转换为Unicode。 父主题: 数据库基本使用

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    APP认证工作原理 构造规范请求。 将待发送的请求内容按照与API网关(即API管理)后台约定的规则组装,确保客户端签名、API网关后台认证时使用的请求内容一致。 使用规范请求和其他信息创建待签字符串。 使用AK/SK和待签字符串计算签名。 将生成的签名信息作为请求消息头添加到H

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读落后自愈技术原理 TaurusDB是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图 主节点与只读节点的通信

    来自:帮助中心

    查看更多 →

  • 背景及原理(服务编排)

    背景及原理(服务编排) AstroZero的服务编排,支持对逻辑判断组件、数据处理组件,以及脚本、子服务编排、商业对象等进行可视化组合编排,实现丰富的业务功能。 了解服务编排 在传统的开发中程序员一般是基于代码进行开发,程序员需要学习内容较多,开发效率相对低一些,开发门槛也高。A

    来自:帮助中心

    查看更多 →

  • Spark基本原理

    DataFrame是一个由多个列组成的结构化的分布式数据集合,等同于关系数据库中的一张表,或者是R/Python中的data frame。DataFrame是Spark SQL中的最基本的概念,可以通过多种方式创建,例如结构化的数据集、Hive表、外部数据库或者是RDD。 可用于DataSet的操作分为T

    来自:帮助中心

    查看更多 →

  • Hue基本原理

    编辑、执行SQL/HQL语句;保存、复制、编辑SQL/HQL模板;解释SQL/HQL语句;保存SQL/HQL语句并进行查询。 数据库展示,数据表展示。 支持多种Hadoop存储。 通过Metastore对数据库及表和视图进行增删改查等操作。 如果使用IE浏览器访问Hue界面来执行HQL,由于浏览器存在的功能

    来自:帮助中心

    查看更多 →

  • Storm基本原理

    易于调试:CQL提供了详细的异常码说明,降低了用户对各种错误的处理难度。 关于Storm的架构和详细原理介绍,请参见:https://storm.apache.org/。 Storm原理 基本概念 表1 概念介绍 概念 说明 Tuple Storm核心数据结构,是消息传递的基本单元,

    来自:帮助中心

    查看更多 →

  • Flink基本原理

    Flink基本原理 Flink简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景

    来自:帮助中心

    查看更多 →

  • YARN基本原理

    YARN基本原理 为了实现一个Hadoop集群的集群共享、可伸缩性和可靠性,并消除早期MapReduce框架中的JobTracker性能瓶颈,开源社区引入了统一的资源管理框架YARN。 YARN是将JobTracker的两个主要功能(资源管理和作业调度/监控)分离,主要方法是创建

    来自:帮助中心

    查看更多 →

  • FederatedHPA工作原理

    展出的Pod调度到具有更多资源的集群,以解决单个集群的资源限制,提高故障发生时的恢复能力。 FederatedHPA工作原理 FederatedHPA的工作原理如图1,实现流程如下: HPA Controller通过API定期查询工作负载的指标数据。 karmada-apiser

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM 将根据源端的字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时的字段类型映射 CDM在 数据仓库 服务(Data Warehouse Service,简称DWS)中自动建表时,DWS的表与源表的字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读落后自愈技术原理 TaurusDB是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图 主节点与只读节点的通信

    来自:帮助中心

    查看更多 →

  • 导出包含API信息的EXCEL文件

    导出包含API信息的EXCEL文件 功能介绍 导出包含API信息的EXCEL文件。 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/service/export/excel 表1 路径参数 参数 是否必选 参数类型 描述 project_id

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 HPA工作原理 HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩的控制器,HPA周期性检查Pod的度量数据,计算满足HPA资源所配置的目标数值所需的副本数量,进而调整目标资源(如Deployment)的replicas字段。

    来自:帮助中心

    查看更多 →

  • HBase基本原理

    HBase基本原理 数据存储使用HBase来承接,HBase是一个开源的、面向列(Column-Oriented)、适合存储海量非结构化数据或半结构化数据的、具备高可靠性、高性能、可灵活扩展伸缩的、支持实时数据读写的分布式存储系统。更多关于HBase的信息,请参见:https://hbase

    来自:帮助中心

    查看更多 →

  • Hive基本原理

    开发。 元数据存储:Hive将元数据存储在数据库中,如MySQL、Derby。Hive中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。 Hive结构 Hive为单实例的服务进程,提供服务的原理是将HQL编译解析成相应的MapReduc

    来自:帮助中心

    查看更多 →

  • Kafka基本原理

    Group1与Consumer Group2中。 关于Kafka架构和详细原理介绍,请参见:https://kafka.apache.org/24/documentation.html。 Kafka原理 消息可靠性 Kafka Broker收到消息后,会持久化到磁盘,同时,To

    来自:帮助中心

    查看更多 →

  • HetuEngine基本原理

    HetuEngine基本原理 HetuEngine简介 HetuEngine是自研高性能交互式SQL分析及数据虚拟化引擎。与大数据生态无缝融合,实现海量数据秒级交互式查询;支持跨源跨域统一访问,使能 数据湖 内、湖间、湖仓一站式SQL融合分析。 HetuEngine结构 HetuEn

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 CCE支持多种工作负载伸缩方式,策略对比如下: 表1 弹性伸缩策略对比 伸缩策略 HPA策略 CronHPA策略 CustomedHPA策略 VPA策略 AHPA策略 策略介绍 Kubernetes中实现POD水平自动伸缩的功能,即Horizontal Pod Autoscaling。

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM将根据源端的字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时的字段类型映射 CDM在数据仓库服务(Data Warehouse Service,简称DWS)中自动建表时,DWS的表与源表的字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了