经销商伙伴计划

具有华为云的售前咨询、销售、服务能力,将华为云销售给最终用户的合作伙伴

 

 

 

    bp神经网络训练集归一化 更多内容
  • 训练的数据集预处理说明

    ModelLink预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:alpaca_gpt4_data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    训练的数据预处理说明 以llama2-13b举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据预处理,并检查是否已经完成数据预处理。 如果已完成数据预处理,则直接执行训练任务。如果未进行数据预处理,则会自动执行scripts/llama2/1_preprocess_data

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ModelLink预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    训练的数据预处理说明 以llama2-13b举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据预处理,并检查是否已经完成数据预处理。 如果已完成数据预处理,则直接执行训练任务。如果未进行数据预处理,则会自动执行scripts/llama2/1_preprocess_data

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:alpaca_gpt4_data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    性,并可在组织内共享数据。 图10 数据均衡性分析 图11 共享样本数据库管理 全流程可视化自主训练,用户可选择网络结构、数据利用云端算力进行自动学习,也可以利用notebook进行算法开发;支持基于预训练模型进行模型的自主训练与迭代优化,提高模型训练效率和精度。 图12 新建工程

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。 特

    来自:帮助中心

    查看更多 →

  • 业务代码问题

    MXNet创建kvstore时程序被阻塞,无报错 日志出现ECC错误,导致训练作业失败 超过最大递归深度导致训练作业失败 使用预置算法训练时,训练失败,报“bndbox”错误 训练作业进程异常退出 训练作业进程被kill 父主题: 训练作业

    来自:帮助中心

    查看更多 →

  • 策略参数说明

    max_iterations 是 Int 模型训练的最大迭代轮数。取值范围[1,1000]。 early_stop_iterations 是 Int 在测试上连续early_stop_iterations轮迭代的AUC小于当前最优AUC时,迭代停止,训练结束。取值范围[1,1000],不大于max_iterations。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:alpaca_gpt4_data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    训练的数据预处理说明 以llama2-13b举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据预处理,并检查是否已经完成数据预处理。 如果已完成数据预处理,则直接执行训练任务。如果未进行数据预处理,则会自动执行scripts/llama2/1_preprocess_data

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    训练的数据预处理说明 以llama2-13b举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据预处理,并检查是否已经完成数据预处理。 如果已完成数据预处理,则直接执行训练任务。如果未进行数据预处理,则会自动执行scripts/llama2/1_preprocess_data

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:alpaca_gpt4_data)。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了