云数据库 RDS for MySQL

 

云数据库 RDS for MySQL拥有即开即用、稳定可靠、安全运行、弹性伸缩、轻松管理、经济实用等特点,让您更加专注业务发展。

 
 

    mysql原理 更多内容
  • 增量迁移原理介绍

    增量迁移原理介绍 文件增量迁移 关系数据库增量迁移 HBase/CloudTable增量迁移 MongoDB/DDS增量迁移 父主题: 数据迁移进阶实践

    来自:帮助中心

    查看更多 →

  • 增量迁移原理介绍

    增量迁移原理介绍 文件增量迁移 关系数据库增量迁移 HBase/CloudTable增量迁移 MongoDB/DDS增量迁移 父主题: 关键操作指导

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    APP认证工作原理 构造规范请求。 将待发送的请求内容按照与API网关(即API管理)后台约定的规则组装,确保客户端签名、API网关后台认证时使用的请求内容一致。 使用规范请求和其他信息创建待签字符串。 使用AK/SK和待签字符串计算签名。 将生成的签名信息作为请求消息头添加到H

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读落后自愈技术原理 TaurusDB是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图 主节点与只读节点的通信

    来自:帮助中心

    查看更多 →

  • 背景及原理(服务编排)

    背景及原理(服务编排) AstroZero的服务编排,支持对逻辑判断组件、数据处理组件,以及脚本、子服务编排、商业对象等进行可视化组合编排,实现丰富的业务功能。 了解服务编排 在传统的开发中程序员一般是基于代码进行开发,程序员需要学习内容较多,开发效率相对低一些,开发门槛也高。A

    来自:帮助中心

    查看更多 →

  • Spark基本原理

    Spark基本原理 Spark简介 Spark是一个开源的,并行数据处理框架,能够帮助用户简单、快速的开发大数据应用,对数据进行离线处理、流式处理、交互式分析等。 Spark提供了一个快速的计算、写入及交互式查询的框架。相比于Hadoop,Spark拥有明显的性能优势。Spark

    来自:帮助中心

    查看更多 →

  • Hue基本原理

    Hue基本原理 Hue是一组WEB应用,用于和 MRS 大数据组件进行交互,能够帮助用户浏览HDFS,进行Hive查询,启动MapReduce任务等,它承载了与所有MRS大数据组件交互的应用。 Hue主要包括了文件浏览器和查询编辑器的功能: 文件浏览器能够允许用户直接通过界面浏览以及操作HDFS的不同目录;

    来自:帮助中心

    查看更多 →

  • Storm基本原理

    易于调试:CQL提供了详细的异常码说明,降低了用户对各种错误的处理难度。 关于Storm的架构和详细原理介绍,请参见:https://storm.apache.org/。 Storm原理 基本概念 表1 概念介绍 概念 说明 Tuple Storm核心数据结构,是消息传递的基本单元,

    来自:帮助中心

    查看更多 →

  • Flink基本原理

    Flink基本原理 Flink简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景

    来自:帮助中心

    查看更多 →

  • YARN基本原理

    YARN基本原理 为了实现一个Hadoop集群的集群共享、可伸缩性和可靠性,并消除早期MapReduce框架中的JobTracker性能瓶颈,开源社区引入了统一的资源管理框架YARN。 YARN是将JobTracker的两个主要功能(资源管理和作业调度/监控)分离,主要方法是创建

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    38位时,Hive按38位创建,s小于0时,按0创建,受Hive数据类型限制,此场景可能会导致数据写入后精度丢失。 表1 MySQL->Hive自动建表时的字段映射 数据类型(MySQL) 数据类型(Hive) 说明 数值类型 tinyint(1),bit(1) BOOLEAN - TINYINT

    来自:帮助中心

    查看更多 →

  • FederatedHPA工作原理

    展出的Pod调度到具有更多资源的集群,以解决单个集群的资源限制,提高故障发生时的恢复能力。 FederatedHPA工作原理 FederatedHPA的工作原理如图1,实现流程如下: HPA Controller通过API定期查询工作负载的指标数据。 karmada-apiser

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读落后自愈技术原理 TaurusDB是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图 主节点与只读节点的通信

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    APP认证工作原理 APP认证流程 构造规范请求。 将待发送的请求内容按照与APIC后台约定的规则组装,确保客户端签名、APIC后台认证时使用的请求内容一致。 使用规范请求和其他信息创建待签字符串。 使用AK/SK和待签字符串计算签名。 将生成的签名信息作为请求消息头添加到HTT

    来自:帮助中心

    查看更多 →

  • 产品架构和功能原理

    原始增量日志数据(例如MySQL为binlog),经过解析转换为标准的日志格式存储在本地。 日志回放模块:日志回放模块根据日志读取模块转换的标准格式增量日志,根据用户的选择策略进行加工过滤,将增量数据同步到目标数据库。 备份迁移基本原理 图3 备份迁移原理 备份迁移实现SQLSe

    来自:帮助中心

    查看更多 →

  • 异地双活原理介绍

    异地双活原理介绍 GeminiDB Cassandra提供了异地双活功能,通过异地实例间数据的双向同步和业务灵活调度能力,实现了业务恢复和故障恢复解耦,保障了故障场景下业务的连续性。 异地双活是一种多活容灾架构的解决方案,即部署在不同数据中心的GeminiDB Cassandra

    来自:帮助中心

    查看更多 →

  • HDFS基本原理

    HDFS基本原理 HDFS是Hadoop的分布式文件系统(Hadoop Distributed File System),实现大规模数据可靠的分布式读写。HDFS针对的使用场景是数据读写具有“一次写,多次读”的特征,而数据“写”操作是顺序写,也就是在文件创建时的写入或者在现有文件

    来自:帮助中心

    查看更多 →

  • MemArtsCC基本原理

    MemArtsCC基本原理 MemArtsCC是一个分布式计算侧缓存系统。计算任务运行在计算集群的虚拟机(Virtual Machine, VM)上,数据存储在远端的对象存储(Object Storage Service, OBS)集群中。由于远端OBS的数据访问速度限制,VM上

    来自:帮助中心

    查看更多 →

  • Doris基本原理

    Doris整体架构如下图所示,FE和BE节点可以横向无限扩展。 图1 Doris架构 表1 参数说明 名称 说明 MySQL Tools Doris采用MySQL协议,高度兼容MySQL语法,支持标准SQL,用户可以通过各类客户端工具来访问Doris,并支持与BI工具无缝对接。 FE 主要

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    APP认证工作原理 构造规范请求。 将待发送的请求内容按照与API网关(即API管理)后台约定的规则组装,确保客户端签名、API网关后台认证时使用的请求内容一致。 使用规范请求和其他信息创建待签字符串。 使用AK/SK和待签字符串计算签名。 将生成的签名信息作为请求消息头添加到H

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 HPA工作原理 HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩的控制器,HPA周期性检查Pod的度量数据,计算满足HPA资源所配置的目标数值所需的副本数量,进而调整目标资源(如Deployment)的replicas字段。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了