半精度浮点数如何看配置 更多内容
  • 如何提高识别精度

    如何提高识别精度 尽量使用文字清晰度高、无反光的图片。进行图片采集时,尽量提高待识别文字区域占比,减少无关背景占比,保持图片内文字清晰人眼可辨认。 若图片有旋转角度,算法支持自动修正,建议图片不要过度倾斜。 图片尺寸方面,建议最长边不超过8192像素,最短边不小于15像素,图像长宽比例维持常见水平

    来自:帮助中心

    查看更多 →

  • 精度函数

    精度函数 HLL(HyperLogLog)主要存在三种模式Explicit,Sparse,Full。当数据规模比较小的时候会使用Explicit模式和Sparse模式, 这两种模式在计算结果上基本上没有误差。 随着distinct值越来越多,就会转换成Full模式,但结果也会存在

    来自:帮助中心

    查看更多 →

  • 精度校验

    精度校验 转换模型后执行推理前,可以使用benchmark工具对MindSpore Lite云侧推理模型进行基准测试。它不仅可以对MindSpore Lite云侧推理模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 精度测试 benc

    来自:帮助中心

    查看更多 →

  • 精度函数

    精度函数 HLL(HyperLogLog)主要存在三种模式Explicit,Sparse,Full。当数据规模比较小的时候会使用Explicit模式和Sparse模式, 这两种模式在计算结果上基本上没有误差。 随着distinct值越来越多,就会转换成Full模式,但结果也会存在

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢

    来自:帮助中心

    查看更多 →

  • 时间精度(time

    时间精度(time_confidence) 数值 含义 0 不具备或不可用 1 100 2 50 3 20 4 10 5 2 6 1 7 0.5 8 0.2 9 0.1 10 0.05 11 0.02 12 0.01 13 0.005 14 0.002 15 0.001 16 0

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-3rdLLM-xxx.zip的llm_tools/llm_evaluation(6.3.905版本)目

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,建议在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。若需要在生产环境中进行推理精度测试,请通过调用接口的方式进行测试。 Step1 执行精度测试 精度测试需要数据集进行测试。推荐公共数据集mmlu

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。

    来自:帮助中心

    查看更多 →

  • 精度问题处理

    精度问题处理 设置高精度并重新转换模型 在转换模型时,默认采用的精度模式是fp16,如果转换得到的模型和标杆数据的精度差异比较大,可以使用fp32精度模式提升模型的精度精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在

    来自:帮助中心

    查看更多 →

  • 训练精度测试

    --baseline <baseline>:<可选>GP-Ant8机器精度基线Yaml文件路径,不填则使用工具自带基线配置,默认基线配置样例如下: 客户使用工具自带精度基线Yaml则需使用accuracy_cfgs.yaml文件中默认配置,权重使用表1 模型权重中指定的Huggingface地址,数据指定data

    来自:帮助中心

    查看更多 →

  • 训练精度测试

    --baseline <baseline>:<可选>GP-Ant8机器精度基线Yaml文件路径,不填则使用工具自带基线配置,默认基线配置样例如下: 客户使用工具自带精度基线Yaml则需使用accuracy_cfgs.yaml文件中默认配置,权重使用表1 模型权重中指定的Huggingface地址,数据指定data

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC

    来自:帮助中心

    查看更多 →

  • 精度函数

    精度函数 HLL(HyperLogLog)主要存在三种模式Explicit,Sparse,Full。当数据规模比较小的时候会使用Explicit模式和Sparse模式, 这两种模式在计算结果上基本上没有误差。 随着distinct值越来越多,就会转换成Full模式,但结果也会存在

    来自:帮助中心

    查看更多 →

  • 数据精度

    数据精度 原始成本的数据精度和账单金额一致。 摊销成本需要按照四舍五入进行保留小数,因此摊销成本会存在微小的精度差异: 成本中心页面上展示的金额,均按照四舍五入规则,保留2位小数; 导出的成本明细数据,会根据成本数据的原始精度,保留8位小数。 需要进行分摊的数据包括: 包年/包月的订单金额。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了