GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    哪个GPU运算服务器好 更多内容
  • 安装并配置GPU驱动

    安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

  • GPU节点驱动版本

    GPU节点驱动版本 选择GPU节点驱动版本 CCE推荐的GPU驱动版本列表 手动更新GPU节点驱动版本 通过节点池升级节点的GPU驱动版本 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • 使用GPU虚拟化

    init容器不支持使用GPU虚拟化资源。 GPU虚拟化支持显存隔离、显存与算力隔离两种隔离模式。单个GPU卡仅支持调度同一种隔离模式的工作负载。 v1.27及以下的集群中,使用GPU虚拟化后,不支持使用Autoscaler插件自动扩缩容GPU虚拟化节点。 XGPU服务的隔离功能不支持以UVM的方式申请显存,即调用CUDA

    来自:帮助中心

    查看更多 →

  • GPU实例故障处理流程

    GPU实例故障处理流程 GPU实例故障处理流程如图1所示,对应的操作方法如下: CES监控事件通知:配置GPU的CES监控后会产生故障事件通知。 故障信息收集:可使用GPU故障信息收集脚本一键收集,也可参考故障信息收集执行命令行收集。 GPU实例故障分类列表:根据错误信息在故障分类列表中识别故障类型。

    来自:帮助中心

    查看更多 →

  • 字符串函数和运算符

    字符串函数和运算符 字符串运算符 ||表示字符连接 SELECT 'he'||'llo'; –hello 字符串函数 这些函数假定输入字符串包含有效的UTF-8编码的Unicode代码点。不会显式检查UTF-8数据是否有效,对于无效的UTF-8数据,函数可能会返回错误的结果。可以

    来自:帮助中心

    查看更多 →

  • GPU服务器上配置Lite Server资源软件环境

    安装nvidia-fabricmanager Ant系列GPU支持NvLink & NvSwitch,若您使用多GPU卡的机型,需额外安装与驱动版本对应的nvidia-fabricmanager服务使GPU卡间能够互联,否则可能无法正常使用GPU实例。 nvidia-fabricmanager必须和nvidia

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Windows)

    (推荐)自动安装GPU加速型E CS GPU驱动(Windows) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Windows实例上通过脚本自动安装GPU驱动。 使用须知 如果GPU加速型实例已安装G

    来自:帮助中心

    查看更多 →

  • RocketMQ实例兼容开源RocketMQ哪个版本?

    RocketMQ实例兼容开源RocketMQ哪个版本? RocketMQ实例兼容开源RocketMQ 4.8.0和5.x,客户端推荐使用4.9.5及更新的版本。 父主题: 实例问题

    来自:帮助中心

    查看更多 →

  • 查询镜像列表(OpenStack原生v2--已废弃,不推荐使用)

    rue,否则无需增加该属性。 __support_xen_gpu_type 否 String 表示该镜像是支持XEN虚拟化平台下的GPU类型。支持GPU加速型实例的镜像操作系统类型请参考表2。如果不支持XEN虚拟化下GPU类型,无需添加该属性。该属性与“__support_xen

    来自:帮助中心

    查看更多 →

  • 镜像属性

    ,则值为true,否则无需增加该属性。 __support_xen_gpu_type String 表示该镜像是支持XEN虚拟化平台下的GPU优化类型。镜像操作系统类型请参考表2。如果不支持XEN虚拟化下GPU类型,无需添加该属性。该属性与“__support_xen”和“__support_kvm”属性不共存。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    Diffusion with diffusers。 推理业务迁移到昇腾的通用流程,可参考GPU推理业务迁移至昇腾的通用指导。 由于Huggingface网站的限制,访问Stable Diffusion链接时需使用代理 服务器 ,否则可能无法访问网站。 在Stable Diffusion迁移适配时,更

    来自:帮助中心

    查看更多 →

  • 日期、时间函数及运算符

    日期、时间函数及运算符 日期时间运算运算符 示例 结果 + date '2012-08-08' + interval '2' day 2012-08-10 + time '01:00' + interval '3' hour 04:00:00.000 + timestamp '2012-08-08

    来自:帮助中心

    查看更多 →

  • 选择GPU节点驱动版本

    选择GPU节点驱动版本 使用GPU加速 云服务器 时,需要安装正确的Nvidia基础设施软件,才可以使用GPU实现计算加速功能。在使用GPU前,您需要根据GPU型号,选择兼容配套软件包并安装。 本文将介绍如何选择GPU节点的驱动版本及配套的CUDA Toolkit。 如何选择GPU节点驱动版本

    来自:帮助中心

    查看更多 →

  • 训练作业找不到GPU

    GPU。 处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器GPU编号,可以为0,1,2,3等,表明对程序可见的GP

    来自:帮助中心

    查看更多 →

  • 准备GPU虚拟化资源

    准备GPU虚拟化资源 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。本文介绍如何在GPU节点上实现GPU的调度和隔离能力。 前提条件 配置 支持版本 集群版本 v1.23.8-r0、v1.25

    来自:帮助中心

    查看更多 →

  • 使用Kubernetes默认GPU调度

    通过nvidia.com/gpu指定申请GPU的数量,支持申请设置为小于1的数量,比如nvidia.com/gpu: 0.5,这样可以多个Pod共享使用GPUGPU数量小于1时,不支持跨GPU分配,如0.5 GPU只会分配到一张卡上。 使用nvidia.com/gpu参数指定GPU数量时,re

    来自:帮助中心

    查看更多 →

  • 应用GPU资源调度方式

    应用GPU资源调度方式 IEF支持多应用共享的方式使用GPU显卡。 IEF支持单个应用使用多个GPU显卡。 GPU资源调度基于GPU显存容量,调度采用GPU显存预分配方式而非实时GPU显存资源。 当应用需要使用的GPU显存资源小于单个GPU卡显存时,支持以共享方式进行资源调度,对

    来自:帮助中心

    查看更多 →

  • GPU实例故障自诊断

    GPU实例故障自诊断 GPU实例故障,如果已安装GPU监控的CES Agent,当GPU服务器出现异常时则会产生事件通知,可以及时发现问题避免造成用户损失。如果没有安装CES Agent,只能依赖用户对故障的监控情况,发现故障后及时联系技术支持处理。 GPU实例故障处理流程 GPU实例故障分类列表

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    GPUGPU时钟频率 cce_gpu_memory_clock GPUGPU显存频率 cce_gpu_graphics_clock GPUGPU图形处理器频率 cce_gpu_video_clock GPUGPU视频处理器频率 物理状态数据 cce_gpu_temperature

    来自:帮助中心

    查看更多 →

  • GPU插件检查异常处理

    GPU插件检查异常处理 检查项内容 检查到本次升级涉及GPU插件,可能影响新建GPU节点时GPU驱动的安装。 解决方案 由于当前GPU插件的驱动配置由您自行配置,需要您验证两者的兼容性。建议您在测试环境验证安装升级目标版本的GPU插件,并配置当前GPU驱动后,测试创建节点是否正常使用。

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了