对象存储服务 OBS     

对象存储服务(Object Storage Service)是一款稳定、安全、高效、易用的云存储服务,具备标准Restful API接口,可存储任意数量和形式的非结构化数据。

 
 

    计算机数据存储原理 更多内容
  • Hive ORC数据存储优化

    Hive ORC数据存储优化 操作场景 “ORC”是一种高效的列存储格式,在压缩比和读取效率上优于其他文件格式。 建议使用“ORC”作为Hive表默认的存储格式。 前提条件 已登录Hive客户端,具体操作请参见Hive客户端使用实践。 操作步骤 推荐:使用“SNAPPY”压缩,适用于压缩比和读取效率要求均衡场景。

    来自:帮助中心

    查看更多 →

  • 数据库存储

    数据存储 TaurusDB标准版支持哪些存储引擎 TaurusDB标准版使用的什么存储 TaurusDB标准版是否支持存储过程和函数 数据超过了TaurusDB标准版实例的最大存储容量怎么办 如何查看TaurusDB标准版的存储空间使用情况

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    APP认证工作原理 构造规范请求。 将待发送的请求内容按照与API网关(即API管理)后台约定的规则组装,确保客户端签名、API网关后台认证时使用的请求内容一致。 使用规范请求和其他信息创建待签字符串。 使用AK/SK和待签字符串计算签名。 将生成的签名信息作为请求消息头添加到H

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读落后自愈技术原理 TaurusDB是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图 主节点与只读节点的通信

    来自:帮助中心

    查看更多 →

  • Spark基本原理

    Streaming失败,这些接收到的数据也不会丢失。另外,接收数据的正确性只在数据被预写到日志以后Receiver才会确认,已经缓存但还没有保存的数据可以在Driver重新启动之后由数据源再发送一次。这两个机制确保了零数据丢失,即所有的数据或者从日志中恢复,或者由数据源重发。 如果需要启用预写日志功能,可以通过如下动作实现:

    来自:帮助中心

    查看更多 →

  • Hue基本原理

    手动配置HDFS目录存储策略,配置动态存储策略等操作。 Hive: 编辑、执行SQL/HQL语句;保存、复制、编辑SQL/HQL模板;解释SQL/HQL语句;保存SQL/HQL语句并进行查询。 数据库展示,数据表展示。 支持多种Hadoop存储。 通过Metastore对数据库及表和视图进行增删改查等操作。

    来自:帮助中心

    查看更多 →

  • Storm基本原理

    Spout Topology中产生源数据的组件,是Tuple的来源,通常可以从外部数据源(如消息队列、数据库、文件系统、TCP连接等)读取数据,然后转换为Topology内部的数据结构Tuple,由下一级组件处理。 Bolt Topology中接受数据并执行具体处理逻辑(如过滤,统计、转换、合并、结果持久化等)的组件。

    来自:帮助中心

    查看更多 →

  • Flink基本原理

    Flink基本原理 Flink简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景

    来自:帮助中心

    查看更多 →

  • YARN基本原理

    YARN基本原理 为了实现一个Hadoop集群的集群共享、可伸缩性和可靠性,并消除早期MapReduce框架中的JobTracker性能瓶颈,开源社区引入了统一的资源管理框架YARN。 YARN是将JobTracker的两个主要功能(资源管理和作业调度/监控)分离,主要方法是创建

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM 将根据源端的字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时的字段类型映射 CDM在数据仓库服务(Data Warehouse Service,简称DWS)中自动建表时,DWS的表与源表的字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • FederatedHPA工作原理

    载的指标数据。 karmada-metrics-adapter将计算的指标数据返回至HPA Controller。 HPA Controller基于返回的指标数据计算所需的Pod扩缩数量,并保持负载伸缩的稳定性。 图1 FederatedHPA工作原理 如何计算指标数据? 指标数

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读落后自愈技术原理 TaurusDB是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图 主节点与只读节点的通信

    来自:帮助中心

    查看更多 →

  • 背景及原理(服务编排)

    背景及原理(服务编排) AstroZero的服务编排,支持对逻辑判断组件、数据处理组件,以及脚本、子服务编排、商业对象等进行可视化组合编排,实现丰富的业务功能。 了解服务编排 在传统的开发中程序员一般是基于代码进行开发,程序员需要学习内容较多,开发效率相对低一些,开发门槛也高。A

    来自:帮助中心

    查看更多 →

  • 远程连接Windows云服务器报错:此计算机无法连接到远程计算机

    远程连接Windows 云服务器 报错:此计算机无法连接到远程计算机 问题描述 使用远程登录方式连接登录Windows云 服务器 时出现如下错误:此计算机无法连接到远程计算机。 图1 无法连接到远程计算机 可能原因 服务端安全组3389端口未开启。检查云 服务器端口 配置 服务端防火墙关闭。检查防火墙配置是否正常

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    APP认证工作原理 APP认证流程 构造规范请求。 将待发送的请求内容按照与APIC后台约定的规则组装,确保客户端签名、APIC后台认证时使用的请求内容一致。 使用规范请求和其他信息创建待签字符串。 使用AK/SK和待签字符串计算签名。 将生成的签名信息作为请求消息头添加到HTT

    来自:帮助中心

    查看更多 →

  • 产品架构和功能原理

    检查和校验后,执行导入命令将数据恢复到目标数据库。 实时同步基本原理 图4 实时同步原理 实时同步功能实现源数据库和目标数据库的数据长期同步,主要用于OLTP到OLAP、OLTP到大数据组件的数据实时同步。全量和增量的数据同步和实时迁移的技术原理基本一致,但是基于不同的业务使用场景,两个功能还是有些差异。

    来自:帮助中心

    查看更多 →

  • 异地双活原理介绍

    Cassandra数据库可以同时为用户业务提供服务。当一个数据中心发生故障而另一个数据中心正常运行时,可以通过业务层的调度将故障区域的业务切换到正常区域,因为配置了异地双活,您可以在数据中心运行正常的区域继续处理数据。在业务不中断的前提下实现故障场景下业务的快速恢复,保证了故障场景下业务的连续性。

    来自:帮助中心

    查看更多 →

  • GaussDB(for MySQL)备份原理

    MySQL)备份原理数据 GaussDB (for MySQL)基于华为最新一代DFV存储,采用计算与存储分离架构,计算层用于给外部提供服务,管理日志信息,存储存储数据信息。存储层分为Common Log节点和Slice Store节点,Common Log节点存储日志信息,Slice

    来自:帮助中心

    查看更多 →

  • HDFS基本原理

    NameNode中的数据保持同步,处理来自客户端的读请求。 DataNode 用于存储每个文件的“数据块”数据,并且会周期性地向NameNode报告该DataNode的数据存放情况。 JournalNode HA集群下,用于同步主备NameNode之间的元数据信息。 ZKFC Z

    来自:帮助中心

    查看更多 →

  • MemArtsCC基本原理

    MemArtsCC基本原理 MemArtsCC是一个分布式计算侧缓存系统。计算任务运行在计算集群的虚拟机(Virtual Machine, VM)上,数据存储在远端的对象存储(Object Storage Service, OBS)集群中。由于远端OBS的数据访问速度限制,VM上的

    来自:帮助中心

    查看更多 →

  • Doris基本原理

    定。 Tablet&Partition 在Doris的存储引擎中,用户数据被水平划分为若干个数据分片(Tablet,也称作数据分桶)。每个Tablet包含若干数据行。各个Tablet之间的数据没有交集,并且在物理上是独立存储的。 多个Tablet在逻辑上归属于不同的分区(Part

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了