数据湖探索 DLI

数据湖探索(Data Lake Insight,简称DLI)是完全兼容Apache Spark和Apache Flink生态, 实现批流一体的Serverless大数据计算分析服务。DLI支持多模引擎,企业仅需使用SQL或程序就可轻松完成异构数据源的批处理、流处理、内存计算、机器学习等,挖掘和探索数据价值

 
进入控制台立即购买帮助文档DLI开发者社区1对1咨询                
               

           

    spark 云服务器 更多内容
  • Spark

    Spark Spark jar包冲突列表 Jar包名称 描述 处理方案 spark-core_2.1.1-*.jar Spark任务的核心jar包。 Spark可以直接使用开源同版本的Spark包运行样例代码,但是不同版本的spark-core包在使用的时候可能导致互相序列化ID不一样,因此建议使用集群自带jar包。

    来自:帮助中心

    查看更多 →

  • Spark

    Spark Spark基本原理 Spark HA方案介绍 Spark与其他组件的关系 Spark开源增强特性 父主题: 组件介绍

    来自:帮助中心

    查看更多 →

  • DLI Spark

    DLI Spark 功能 通过DLI Spark节点执行一个预先定义的Spark作业。 DLI Spark节点的具体使用教程,请参见开发一个DLI Spark作业。 参数 用户可参考表1,表2和表3配置DLI Spark节点的参数。 表1 属性参数 参数 是否必选 说明 节点名称

    来自:帮助中心

    查看更多 →

  • Spark Core

    Spark Core 日志聚合下,如何查看Spark已完成应用日志 Driver返回码和RM WebUI上应用状态显示不一致 为什么Driver进程不能退出 网络连接超时导致FetchFailedException 当事件队列溢出时如何配置事件队列的大小 Spark应用执行过程中

    来自:帮助中心

    查看更多 →

  • 使用Spark

    使用Spark 运行Spark应用时修改split值报错 提交Spark任务时提示参数格式错误 磁盘容量不足导致Spark、Hive和Yarn服务不可用 引入jar包不正确导致Spark任务无法运行 Spark任务由于内存不够或提交作业时未添加Jar包,作业卡住 提交Spark任务

    来自:帮助中心

    查看更多 →

  • Spark输出

    Spark输出 概述 “Spark输出”算子,用于配置已生成的字段输出到SparkSQL表的列。 输入与输出 输入:需要输出的字段 输出:SparkSQL表 参数说明 表1 算子参数说明 参数 含义 类型 是否必填 默认值 Spark文件存储格式 配置SparkSQL表文件的存储

    来自:帮助中心

    查看更多 →

  • Spark输入

    Spark输入 概述 “Spark输入”算子,将SparkSQL表的指定列转换成同等数量的输入字段。 输入与输出 输入:SparkSQL表列 输出:字段 参数说明 表1 算子参数说明 参数 含义 类型 是否必填 默认值 Spark数据库 SparkSQL的数据库名称。 String

    来自:帮助中心

    查看更多 →

  • Spark输入

    Spark输入 概述 “Spark输入”算子,将SparkSQL表的指定列转换成同等数量的输入字段。 输入与输出 输入:SparkSQL表列 输出:字段 参数说明 表1 算子参数说明 参数 含义 类型 是否必填 默认值 Spark数据库 SparkSQL的数据库名称。 String

    来自:帮助中心

    查看更多 →

  • MRS Spark

    MRS Spark 功能 通过MRS Spark节点实现在MRS中执行预先定义的Spark作业。 参数 用户可参考表1,表2和表3配置MRS Spark节点的参数。 表1 属性参数 参数 是否必选 说明 节点名称 是 节点名称,可以包含中文、英文字母、数字、“_”、“-”、“/”

    来自:帮助中心

    查看更多 →

  • Spark Core

    Spark Core 日志聚合下如何查看Spark已完成应用日志 Driver返回码和RM WebUI上应用状态显示不一致 为什么Driver进程不能退出 网络连接超时导致FetchFailedException 当事件队列溢出时如何配置事件队列的大小 Spark应用执行过程中,

    来自:帮助中心

    查看更多 →

  • 使用Spark/Spark2x

    使用Spark/Spark2x Spark使用说明 Spark用户权限管理 Spark客户端使用实践 访问Spark WebUI界面 使用代理用户提交Spark作业 配置Spark读取HBase表数据 配置Spark任务不获取HBase Token信息 Spark Core企业级能力增强

    来自:帮助中心

    查看更多 →

  • Spark输出

    Spark输出 概述 “Spark输出”算子,用于配置已生成的字段输出到SparkSQL表的列。 输入与输出 输入:需要输出的字段 输出:SparkSQL表 参数说明 表1 算子参数说明 参数 含义 类型 是否必填 默认值 Spark文件存储格式 配置SparkSQL表文件的存储

    来自:帮助中心

    查看更多 →

  • 安装Spark

    mv ./spark/spark-3.1.3-bin-hadoop3.1.tgz /root 执行命令安装Spark。 tar -zxvf spark-3.1.3-bin-hadoop3.1.tgz mv spark-3.1.3-bin-hadoop3.1 spark-obs cat

    来自:帮助中心

    查看更多 →

  • 如何使用PySpark连接MRS Spark?

    如何使用PySpark连接MRS Spark? 问: 如何在E CS 服务器 上用PySpark连接内网开启Kerberos认证的MRS Spark集群? 答: 将Spark的“spark-defaults.conf”文件中“spark.yarn.security.credentials

    来自:帮助中心

    查看更多 →

  • 使用Spark-submit提交Spark Jar作业

    对接的DLI服务的Region。 根据Spark应用程序的需要,修改“spark-defaults.conf”中的配置项,配置项兼容开源Spark配置项,参考开源Spark的配置项说明。 使用Spark-submit提交Spark作业 进入工具文件bin目录,执行spark-submit命令,并携带相关参数。

    来自:帮助中心

    查看更多 →

  • Spark对接OBS

    export PATH=$SPARK_HOME/bin:$SPARK_HOME/sbin:$PATH 配置spark。 重命名/opt/spark-2.3.3/conf/spark-env.sh.template为spark-env.sh并增加配置: export SPARK_DIST_CLASSPATH=$(hadoop

    来自:帮助中心

    查看更多 →

  • 开发Spark应用

    开发Spark应用 Spark Core样例程序 Spark SQL样例程序 通过JDBC访问Spark SQL样例程序 Spark读取HBase表样例程序 Spark从HBase读取数据再写入HBase样例程序 Spark从Hive读取数据再写入HBase样例程序 Spark S

    来自:帮助中心

    查看更多 →

  • Spark作业相类

    Spark作业相类 Spark作业开发类 Spark作业运维类

    来自:帮助中心

    查看更多 →

  • MRS Spark SQL

    MRS Spark SQL 功能 通过MRS Spark SQL节点实现在MRS中执行预先定义的SparkSQL语句。 参数 用户可参考表1,表2和表3配置MRS Spark SQL节点的参数。 表1 属性参数 参数 是否必选 说明 MRS作业名称 否 MRS的作业名称。 如果未

    来自:帮助中心

    查看更多 →

  • Spark故障排除

    对接OBS场景中,spark-beeline登录后指定loaction到OBS建表失败 Spark shuffle异常处理 Spark多服务场景下,普通用户无法登录Spark客户端 安装使用集群外客户端时,连接集群端口失败 Datasource Avro格式查询异常 通过Spark-sql

    来自:帮助中心

    查看更多 →

  • 管理Spark作业

    管理Spark作业 查看Spark作业的基本信息 在总览页面单击“Spark作业”简介,或在左侧导航栏单击“作业管理”>“Spark作业”,可进入Spark作业管理页面。Spark作业管理页面显示所有的Spark作业,作业数量较多时,系统分页显示,您可以查看任何状态下的作业。 表1

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了