AI开发平台ModelArts 

ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。

 
 

    low rank机器学习 更多内容
  • SFT全参微调任务

    Llama2-70B:大于等于4,建议值为8,一般选用几台机器训练则值为几。 RUN_TYPE sft 必填。表示训练类型,sft表示SFT微调训练。 MASTER_ADDR xx.xx.xx.xx 多机必填,单机忽略。指定主节点IP地址,多台机器中需要指定一个节点IP为主节点IP。 一般指定第一个节点IP为主节点IP。

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    ra_70b.sh xx.xx.xx.xx 4 3 以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致。其中MASTER_ADDR、NNODES、NODE_RANK为必填项。 单机启动 对于Llama2-7b和Llama2-13b,操作

    来自:帮助中心

    查看更多 →

  • 执行LoRA微调训练任务

    NNODES=4 NODE_RANK=3 sh scripts/llama2/0_pl_lora_70b.sh 以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致。其中MASTER_ADDR、NNODES、NODE_RANK为必填项。 单机启动 对

    来自:帮助中心

    查看更多 →

  • 执行SFT全参微调训练任务

    NNODES=4 NODE_RANK=3 sh scripts/llama2/0_pl_sft_70b.sh 以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致。其中MASTER_ADDR、 NNODES、 NODE_RANK为必填。 单机启动 对

    来自:帮助中心

    查看更多 →

  • 调测Kafka Low level Streams样例程序

    quorumpeer实例IP地址可登录集群的 FusionInsight Manager界面,在“集群 > 服务 > ZooKeeper > 实例”界面中查询,多个地址可用“,”分隔。ZooKeeper客户端连接端口可通过ZooKeeper服务配置参数“clientPort”查询,例如端口号为2181。 例如执行以下命令:

    来自:帮助中心

    查看更多 →

  • SFT微调训练任务

    s sh scripts/qwen/qwen.sh 以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致。 其中MASTER_ADDR、 NODE_RANK、 NODE_RANK、MODEL_TYPE 、RUN_TYPE、DATASET_PAT

    来自:帮助中心

    查看更多 →

  • 创建自定义场景

    offline 是 String 离线计算规格。 nearline 否 String 实时计算规格。 rank 否 String 深度学习计算规格。 online_tps 否 Integer 在线服务最大并发数。 响应参数 状态码: 200 表7 响应Body参数 参数 参数类型 描述 is_success

    来自:帮助中心

    查看更多 →

  • 更新自定义场景内容

    offline 是 String 离线计算规格。 nearline 否 String 实时计算规格。 rank 否 String 深度学习计算规格。 online_tps 否 Integer 在线服务最大并发数。 响应参数 状态码: 200 表6 响应Body参数 参数 参数类型 描述 is_success

    来自:帮助中心

    查看更多 →

  • 场景介绍

    Optimization):直接偏好优化方法,通过直接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练任务

    NNODES=4 NODE_RANK=3 sh scripts/llama2/0_pl_sft_70b.sh 以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致。其中MASTER_ADDR、 NNODES、 NODE_RANK为必填。 单机启动 对

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 预训练任务

    scripts/llama2/0_pl_pretrain_70b.sh 以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致;其中MASTER_ADDR、 NNODES、 NODE_RANK 为必填。 单机启动 对于Llama2-7B和Llama2-13B,操作过程与Llam

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部 服务器 错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 断点续训练

    s sh scripts/qwen/qwen.sh 以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致。 其中MASTER_ADDR、 NODE_RANK、 NODE_RANK、MODEL_TYPE 、RUN_TYPE、DATASET_PAT

    来自:帮助中心

    查看更多 →

  • 预训练任务

    n_70b.sh xx.xx.xx.xx 4 3 以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致;其中MASTER_ADDR、 NNODES、 NODE_RANK 为必填。 单机启动 对于Llama2-7B和Llama2-13B,操

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    ra_70b.sh xx.xx.xx.xx 8 3 以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致。其中MASTER_ADDR、NNODES、NODE_RANK为必填项。 单机启动 对于Llama2-7b和Llama2-13b,操作

    来自:帮助中心

    查看更多 →

  • SFT全参微调任务

    sh scripts/baichuan2/baichuan2.sh 以上命令多台机器执行时,只有${NODE_RANK}:节点ID值不同,其他参数都保持一致。 其中MASTER_ADDR、NODE_RANK、MODEL_TYPE 、RUN_TYPE、DATA_PATH、TOKENIZ

    来自:帮助中心

    查看更多 →

  • 断点续训练

    sh scripts/baichuan2/baichuan2.sh 以上命令多台机器执行时,只有${NODE_RANK}:节点ID值不同,其他参数都保持一致。 其中MASTER_ADDR、NODE_RANK、MODEL_TYPE 、RUN_TYPE、DATA_PATH、TOKENIZ

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    Megatron-Deepspeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 Me

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了