AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    ai芯 软件算法 训练模型 更多内容
  • 计费说明

    000.00 每套 AI算法设计与优化-专业版 对人工智能场景为复杂场景的企业或政府单位进行算法设计,形成可帮助算法能力较弱的技术人员完成后续开发的技术方案报告。复杂场景工作量预计不超过25人天 900,000.00 每套 AI算法设计与优化-铂金版 对人工智能场景为极特殊的复杂场

    来自:帮助中心

    查看更多 →

  • Octopus开发基本流程?

    对于图片和点云数据,可以通过自动或人工的方式,标注图像中特定物体。标注后的图片和点云图片可用于模型训练,高质量的标注数据有利于模型精准度提升,并持续迭代。 增量数据集 将标注后的数据根据数据类型、标注、标签等,建立不同种类的数据集,同时支持数据集增量更新,可针对性用于不同算法模型训练模型训练 基于平

    来自:帮助中心

    查看更多 →

  • 场景介绍

    。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 LoRA微调LoRA(Low-Rank Adaptation):微调是一种用于调整大型预训练模型的高效微调技术。

    来自:帮助中心

    查看更多 →

  • 网络智能体 NAIE

    集。 模型训练服务为开发者提供电信领域一站式模型开发服务,支持开发者基于训练平台提供的JupyterLab数据探索与特征工程工具、在线VSCode IDE编程工具、AutoML算法选择与超参调优能力、丰富的AI算法框架和在线随时可获取的算力,开发AI算法。 业务开发者 模型训练服务

    来自:帮助中心

    查看更多 →

  • CCE集群

    Octopus平台依赖算子镜像内的/bin/bash、stdbuf、tee软件,请确保基础镜像内包含上述软件且能通过PATH找到。 一般情况下,训练与评测定义为同一个引擎,主要包括算法或评测脚本运行所需要的基本依赖环境。用户可使用命令行模式或Dockerfile模式进行构建。以训练、评测镜像为例,一般的镜像制作Doc

    来自:帮助中心

    查看更多 →

  • SDXL基于Standard适配PyTorch NPU的LoRA训练指导(6.3.908)

    选择作业日志路径 填写参数完成后,提交创建训练任务,训练完成后,作业状态会显示为已完成。 图7 训练启动成功 Step8 断点续训 查看训练日志,在训练任务启动后,当训练超过500步后开始保存checkpoint文件,保存成功后,手动终止训练任务。 图8 保存checkpoint文件

    来自:帮助中心

    查看更多 →

  • ModelArts Standard使用流程

    创建Notebook实例 训练模型 准备算法 创建训练作业前需要先准备算法,可以订阅AI Gallery中的算法,也可以使用用户自己的算法。 准备算法 创建训练作业 创建一个训练作业,选择可用的数据集版本,并使用前面编写完成的训练脚本。训练完成后,将生成模型并存储至OBS中。 创建训练作业 管理模型

    来自:帮助中心

    查看更多 →

  • 镜像制作(训练)

    镜像制作(训练) Octopus平台依赖算子镜像内的/bin/bash、stdbuf、tee软件,请确保基础镜像内包含上述软件且能通过PATH找到。 一般情况下,训练与评测定义为同一个引擎,主要包括算法或评测脚本运行所需要的基本依赖环境。用户可使用命令行模式或Dockerfile

    来自:帮助中心

    查看更多 →

  • 数字人模型训练推理

    数字人模型训练推理 Wav2Lip推理基于Lite Server适配PyTorch NPU推理指导(6.3.907) Wav2Lip训练基于Lite Server适配PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 文生图模型训练推理

    5基于Lite Server适配PyTorch NPU Finetune训练指导(6.3.904) Open-Clip基于Lite Server适配PyTorch NPU训练指导 AIGC工具tailor使用指导

    来自:帮助中心

    查看更多 →

  • 文生视频模型训练推理

    文生视频模型训练推理 CogVideoX1.5 5b模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.912) CogVideoX模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于Lite

    来自:帮助中心

    查看更多 →

  • 产品介绍

    AI使能服务优化与提升服务-AI场景需求调研分析》 AI算法设计与优化 《AI使能服务优化与提升服务-AI算法设计与优化》 AI算法原型开发 AI模型相关代码与使用说明 自动驾驶技术支持与优化服务包 《自动驾驶算法迁移适配服务测试报告》 责任矩阵 服务各阶段分工界面如下: 阶段

    来自:帮助中心

    查看更多 →

  • 使用预置算法训练时,训练失败,报“bndbox”错误

    使用预置算法训练时,训练失败,报“bndbox”错误 问题现象 使用预置算法创建训练作业,训练失败,日志中出现如下报错。 KeyError: 'bndbox' 原因分析 用于训练的数据集中,使用了“非矩形框”标注。而预置使用算法不支持“非矩形框”标注的数据集。 处理方法 此问题有两种解决方法:

    来自:帮助中心

    查看更多 →

  • 如何访问模型训练服务

    用户也可以直接通过账号登录。首次登录后请及时修改密码,并定期修改密码。 单击“登录”,进入NAIE服务官网。 依次选择“AI服务 > AI服务 > 模型训练服务 > 模型训练服务”,进入模型训练服务介绍页面。 单击“进入服务”,进入模型训练服务页面。 父主题: 产品介绍

    来自:帮助中心

    查看更多 →

  • 模型训练服务首页简介

    模型训练服务首页简介 模型训练服务首页展示了用户自己创建的项目和用户所属租户下面其他用户创建的公开项目,提供如下功能: 创建项目 使用模板快速创建项目,模板中已经预制数据集、特征处理算法模型训练算法模型验证算法。 查看和编辑项目信息 模型训练服务首页界面如下图所示。 图1 模型训练服务首页

    来自:帮助中心

    查看更多 →

  • 如何提升模型训练效果?

    在模型构建过程中,您可能需要根据训练结果,不停的调整数据、训练参数或模型,以获得一个满意的模型。更新模型时,可以通过如下几方面提升模型训练效果:检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard训练模型

    使用ModelArts Standard训练模型 模型训练使用流程 准备模型训练代码 准备模型训练镜像 创建调试训练作业 创建算法 创建生产训练作业 分布式模型训练 模型训练存储加速 增量模型训练 自动模型优化(AutoSearch) 模型训练高可靠性 管理模型训练作业

    来自:帮助中心

    查看更多 →

  • 分布式模型训练

    分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题:

    来自:帮助中心

    查看更多 →

  • 管理模型训练作业

    管理模型训练作业 查看训练作业详情 查看训练作业资源占用情况 查看模型评估结果 查看训练作业事件 查看训练作业日志 修改训练作业优先级 使用Cloud Shell调试生产训练作业 重建、停止或删除训练作业 管理训练容器环境变量 查看训练作业标签 父主题: 使用ModelArts Standard训练模型

    来自:帮助中心

    查看更多 →

  • 训练科学计算大模型

    训练科学计算大模型 科学计算大模型训练流程与选择建议 创建科学计算大模型训练任务 查看科学计算大模型训练状态与指标 发布训练后的科学计算大模型 管理科学计算大模型训练任务 科学计算大模型训练常见报错与解决方案 父主题: 开发盘古科学计算大模型

    来自:帮助中心

    查看更多 →

  • eagle投机小模型训练

    eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了