GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    ai如何用gpu训练模型 更多内容
  • 准备模型训练镜像

    案例参考: 从0制作 自定义镜像 用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend)

    来自:帮助中心

    查看更多 →

  • 训练预测分析模型

    同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练模型达到目标后,再执行模型部署的操作。 评估结果说明 根据训练数据类的不同评估结果会包含不同的指标。 离散值评估结果 包含

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    PyTorch NPU训练指导 预训练、SFT全参微调训练、LoRA微调训练 介绍主流的开源大模型Llama系列、Qwen系列、Yi系列、Baichuan系列、ChatGLM系列等基于ModelArts DevServer的训练过程,训练使用PyTorch框架和昇腾NPU计算资源。训练后的模型可用于推理部署,搭建大模型问答助手。

    来自:帮助中心

    查看更多 →

  • 历史待下线案例

    历史待下线案例 使用AI Gallery的订阅算法实现花卉识别 示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 使用ModelArts Standard一键完成商超商品识别模型部署 专属资源池训练

    来自:帮助中心

    查看更多 →

  • 创建单机多卡的分布式训练(DataParallel)

    将一个Batch的数据均分到每一个GPU上 各GPU上的模型进行前向传播,得到输出 主GPU(逻辑序号为0)收集各GPU的输出,汇总后计算损失 分发损失,各GPU各自反向传播梯度 主GPU收集梯度并更新参数,将更新后的模型参数分发到各GPU 具体流程图如下: 图1 单机多卡数据并行训练 代码改造点 模型分发:DataParallel(model)

    来自:帮助中心

    查看更多 →

  • Open-Sora 1.0基于DevServer适配PyTorch NPU训练指导(6.3.905)

    在每个实例节点上运行此命令可以看到总卡数 出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 尚未安装,运行以下命令安装docker。

    来自:帮助中心

    查看更多 →

  • 如何访问模型训练服务

    用户也可以直接通过账号登录。首次登录后请及时修改密码,并定期修改密码。 单击“登录”,进入NAIE服务官网。 依次选择“AI服务 > AI服务 > 模型训练服务 > 模型训练服务”,进入模型训练服务介绍页面。 单击“进入服务”,进入模型训练服务页面。 父主题: 产品介绍

    来自:帮助中心

    查看更多 →

  • 模型训练服务首页简介

    模型训练服务首页 图2 模型训练服务首页 模型训练服务首页介绍如表1所示。 表1 模型训练服务首页说明 区域 参数名称 参数说明 1 当前服务所属的品牌名称。 单击服务名称图标下拉框,从下拉框中选择服务名称,可以进入对应服务的首页界面。 2 华北-北京一 用户账户所属Region。

    来自:帮助中心

    查看更多 →

  • 数字人模型训练推理

    数字人模型训练推理 Wav2Lip推理基于DevServer适配PyTorch NPU推理指导(6.3.907) Wav2Lip训练基于DevServer适配PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 文生视频模型训练推理

    文生视频模型训练推理 CogVideoX模型基于DevServer适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于DevServer适配PyTorch NPU训练推理指导(6.3.910) Open-Sora-Plan1.0基于DevServer适配PyTorch

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    简化和加速了Kubernetes上AI计算进程。当前已经成为越来越多用户的最佳选择,应用于生产环境。Volcano目前已经应用于华为云CCE、CCI产品以及容器批量计算解决方案。未来Volcano会持续迭代演进,优化算法、增强调度能力智能调度的支持,在推理场景增加GPU Sha

    来自:帮助中心

    查看更多 →

  • 查询可用资源规格

    DATA_DESENSITIZATION(数据脱敏) TRAINING_TRAIN(训练任务) TRAINING_EVALUATE(模型评测) TRAINING_COMPILE(模型编译) ANNOTATION_MANUAL(人工标注) ANNOTATION_AI(预标注) ANNOTATION_SEGMENTATION(交互式分割)

    来自:帮助中心

    查看更多 →

  • Msprobe API预检

    API预检 Msprobe是MindStudio Training Tools工具链下精度调试部分的工具包,主要包括精度预检、溢出检测和精度比对等功能,目前适配PyTorch和MindSpore框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。 精度预检工具旨在计算单个AP

    来自:帮助中心

    查看更多 →

  • 查询训练作业参数详情

    训练作业的输出文件OBS路径URL,默认为空,“/usr/train/”。 log_url String 训练作业的日志OBS输出路径URL,默认为空。:“/usr/train/”。 user_image_url String 自定义镜像训练作业的自定义镜像的SWR-URL。 user_command

    来自:帮助中心

    查看更多 →

  • 使用时序预测算法实现访问流量预测

    航栏中的“AI应用管理 >AI应用”,进入AI应用页面。 在“AI应用 > 我的AI应用”页面,单击“创建”,进入创建AI应用页面。 在创建AI应用页面,系统会自动根据上一步训练作业填写参数,参考如下说明确认关键参数。 “元模型来源”:系统自动选择“从训练中选择 >训练作业”。

    来自:帮助中心

    查看更多 →

  • AI原生应用引擎训练好后的模型如何获取?

    AI原生应用引擎训练好后的模型如何获取? 使用模型微调训练模型后的新模型只能通过模型部署(创建模型服务)上线,无法下载至本地使用。 父主题: AI原生应用引擎

    来自:帮助中心

    查看更多 →

  • 制作自定义镜像用于训练模型

    制作自定义镜像用于训练模型 训练作业的自定义镜像制作流程 使用预置镜像制作自定义镜像用于训练模型 已有镜像迁移至ModelArts用于训练模型 从0制作自定义镜像用于创建训练作业(Pytorch+Ascend) 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 从0制

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)版本发布记录

    CCE AI套件(NVIDIA GPU)版本发布记录 表1 CCE AI套件(NVIDIA GPU)版本记录 插件版本 支持的集群版本 更新特性 2.7.19 v1.28 v1.29 v1.30 修复nvidia-container-toolkit CVE-2024-0132容器逃逸漏洞

    来自:帮助中心

    查看更多 →

  • 创建工程

    创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 在联邦学习部署服务创建联邦学习实例时,将“基础模型配置”选择为“从NAIE平台中导入”,自动匹配模型训练服务的联邦学习工程及其训练任务和模型包。 创建联邦学习工程步骤如下。

    来自:帮助中心

    查看更多 →

  • 基于ModelArts Standard运行GPU训练作业

    基于ModelArts Standard运行GPU训练作业 在ModelArts Standard上运行GPU训练作业的场景介绍 在ModelArts Standard运行GPU训练作业的准备工作 在ModelArts Standard上运行GPU单机单卡训练作业 在ModelArts St

    来自:帮助中心

    查看更多 →

  • 准备工作

    过程数据做对比,所以需要分别准备GPU和NPU训练环境,大部分场景需要规模相同的训练环境。如果已经将模型缩减到单机可运行,则只是单台GPU设备即可。 定位前的排查当前主要包含如下几个方面: 训练超参数。常见的超参如下图所示: 图1 训练超参数 模型的超参通常可能调整的主要有学习率、batch

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了