AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    ai机器学习原理 更多内容
  • ai

    ai_watchdog_monitor_status 表1 ai_watchdog_monitor_status参数说明 参数 类型 描述 metric_name text metric指标名称: tps:TPS。 tps_hourly:每小时的TPS均值。 shared_used_mem:共享内存使用量(MB)。

    来自:帮助中心

    查看更多 →

  • MemArtsCC基本原理

    RemoteStore 提供访问OBS服务器的接口,同时内部支持通过流控机制控制预取带宽。 CM(Cluster Manager) 该集群管理模块需要具备集群视图管理,提供静态和动态视图的更新、帮助业务实现快速选主,且集群管理本身要保证服务的高可靠、视图等数据的一致性等。 父主题:

    来自:帮助中心

    查看更多 →

  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts Wor

    来自:帮助中心

    查看更多 →

  • AI

    AI 人脸检测结果 消息名称 MSG_AI_FACE_DETECTION_RESULT 功能描述 启动人脸检测功能后,通过该消息上报人脸检测结果列表,列表中包含 人脸识别 ID及坐标信息,最多支持同时识别十人。 是否自动推送 是 subMsgID 预留 Param1 预留 Param2

    来自:帮助中心

    查看更多 →

  • AI

    AI 企业智慧屏的音幕、声源定位、Auto-Framing是否是终端独立能力,与入驻式平台版本有关联么? 如何实现人脸识别功能? 如何实现人脸唤醒功能? AI多模态会议纪要和实时字幕翻译怎么实现? 父主题: 产品规格

    来自:帮助中心

    查看更多 →

  • AI

    AI GS_MODEL_WAREHOUSE GS_OPT_MODEL GS_ABO_MODEL_STATISTIC 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • ai

    ai_watchdog_parameters 表1 ai_watchdog_parameters参数 参数 类型 描述 name text 参数名称,包括如下常用参数: enable_ai_watchdog:是否开启本功能。 ai_watchdog_max_consuming_time_ms:最大耗时。

    来自:帮助中心

    查看更多 →

  • ai

    ai_watchdog_parameters 表1 ai_watchdog_parameters参数 参数 类型 描述 name text 参数名称,包括如下常用参数: enable_ai_watchdog:是否开启本功能。 ai_watchdog_max_consuming_time_ms:最大耗时。

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的服务器后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 快速掌控MTD潜在威胁

    警类型示例,详情请参见查看告警类型详情。 由于AI检测模型的普遍特性,一般上线后需要基于您的真实数据学习训练大致3个月,学习阶段检测结果可能存在误差,您可以在告警列表的“操作”列单击“反馈可信度”反馈出现的问题。 告警详细信息按照最新发生时间靠前的排序方式进行排序,相关参数说明如表1所示。

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    nicalHeadersEntry0 + CanonicalHeadersEntry1 + ...,其中每个请求消息头(CanonicalHeadersEntry)的格式为Lowercase(HeaderName) + ':' + Trimall(HeaderValue) + '\n'

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读落后自愈技术原理 TaurusDB是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图 主节点与只读节点的通信

    来自:帮助中心

    查看更多 →

  • Spark基本原理

    Spark采用Master和Worker的模式,如图 Spark的Master和Worker所示。用户在Spark客户端提交应用程序,调度器将Job分解为多个Task发送到各个Worker中执行,各个Worker将计算的结果上报给Driver(即Master),Driver聚合结果返回给客户端。

    来自:帮助中心

    查看更多 →

  • Hue基本原理

    Hue由“Supervisor Process”和“WebServer”构成,“Supervisor Process”是Hue的核心进程,负责应用进程管理。“Supervisor Process”和“WebServer”通过“THRIFT/REST”接口与WebServer上的应用进行交互,如图1所示。

    来自:帮助中心

    查看更多 →

  • Storm基本原理

    组件(Component)组成的一个DAG(Directed Acyclic Graph)。一个Topology可以并发地运行在多台机器上,每台机器上可以运行该DAG中的一部分。Topology与Hadoop中的MapReduce Job类似,不同的是,它是一个长驻程序,一旦开始就不会停止,除非人工中止。

    来自:帮助中心

    查看更多 →

  • Flink基本原理

    TaskManager上一个独立的线程中执行,如图5所示。 图5 Operator chain 图5中上半部分表示的是将Source和Map两个紧密度高的算子优化后串成一个Operator Chain,实际上一个Operator Chain就是一个大的Operator的概念。图中的Operator

    来自:帮助中心

    查看更多 →

  • YARN基本原理

    请,任意机器的申请。 图2 资源分配模型 YARN原理 新的Hadoop MapReduce框架被命名为MRv2或YARN。YARN主要包括ResourceManager、ApplicationMaster与NodeManager三个部分。 ResourceManager:RM是

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    FLOAT - float4 FLOAT - float8 DOUBLE - smallserial SMALLINT - serial INT - bigserial BIGINT - numeric(p,s) DECIMAL(P,S) Hive 1 <= precision <=

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读落后自愈技术原理 TaurusDB是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图 主节点与只读节点的通信

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    CanonicalHeaders由多个请求消息头共同组成,CanonicalHeadersEntry0 + CanonicalHeadersEntry1 + ...,其中每个请求消息头(CanonicalHeadersEntry)的格式为Lowercase(HeaderName) + ':'

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了