AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习模型并行 更多内容
  • ModelArts

    ModelArts不仅支持自动学习功能,还预置了多种已训练好的模型,同时集成了Jupyter Notebook,提供在线的代码开发环境。 业务开发者 使用自动学习构建模型 AI初学者 使用自定义算法构建模型 免费体验 ModelArts 免费体验CodeLab 自动学习 口罩检测(使用新版自动学习实现物体检测)

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    法。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。默认0。 L2正则项系数:叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。

    来自:帮助中心

    查看更多 →

  • 使用模型

    ,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练 ModelArts Standard模型训练提供容器化服务和计算资源管理能力,负责建立和管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用和极致性能的深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    用于定义权重衰减的系数。权重衰减是一种正则化技术,可以防止模型过拟合。取值需≥0。 学习率 用于定义学习率的大小。学习率决定了模型参数在每次更新时变化的幅度。如果学习率过大,模型可能会在最优解附近震荡而无法收敛。如果学习率过小,模型收敛的速度可能会非常慢。当batch_size减小时,学习率也应相应地线性减小。预训练时,默认值为:0

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。

    来自:帮助中心

    查看更多 →

  • 创建Notebook实例

    64GB”:GPU单卡规格,16GB显存,适合深度学习场景下的算法训练和调测 Ascend规格 有Snt9(32GB显存)单卡、两卡、八卡等规格。配搭ARM处理器,适合深度学习场景下的模型训练和调测。 “存储配置” 包括“云硬盘EVS”、“弹性文件服务SFS”、“ 对象存储服务 OBS”和“并行文件系统PFS”。请根据界面实际情况和需要选择。

    来自:帮助中心

    查看更多 →

  • 数据并行导入导出

    数据并行导入导出 GaussDB 提供了并行导入导出功能,以快速、高效地完成大量数据导入导出。介绍GaussDB并行导入导出的相关参数。 raise_errors_if_no_files 参数说明:设置导入时是否区分“导入文件记录数为空”和“导入文件不存在”。该参数开启时,“导入文

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    去噪处理:去除无关或异常值,减少对模型训练的干扰。 数据预处理的目的是保证数据集的质量,使其能够有效地训练模型,并减少对模型性能的不利影响。 模型开发:模型开发是大模型项目中的核心阶段,通常包括以下步骤: 选择合适的模型:根据任务目标选择适当的模型模型训练:使用处理后的数据集训练模型。 超参数调优

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    创建模型微调任务 模型微调是指调整大型语言模型的参数以适应特定任务的过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 验证并行查询效果

    验证并行查询效果 本章节使用TPCH测试工具测试并行查询对22条QUERY的性能提升情况。 测试的实例信息如下: 实例规格:32 vCPUs | 256 GB 内核版本:2.0.26.1 并行线程数:16 测试数据量:100GB 操作步骤 生成测试数据。 请在https://github

    来自:帮助中心

    查看更多 →

  • 关于OBS并行导入

    DB(DWS)并行导入海量数据,使用普通方式会耗费大量的时间。GaussDB(DWS)提供了OBS(Object Storage Service)及外表接口,通过OBS外表设置的导入URL路径、导入数据格式等信息来识别数据源文件,利用多DN(Datanode)并行的方式,实现了数据的快速并行导入。

    来自:帮助中心

    查看更多 →

  • 关于GDS并行导入

    (导入)。 概述 并行导入将存储在 服务器 普通文件系统中的数据导入到GaussDB(DWS)数据库中。暂时不支持将存储在HDFS文件系统上的数据导入GaussDB(DWS)。 并行导入功能通过外表设置的导入策略、导入数据格式等信息来识别数据源文件,利用多DN并行的方式,将数据从数据

    来自:帮助中心

    查看更多 →

  • 关于OBS并行导出

    关于OBS并行导出 概述 GaussDB(DWS)数据库支持通过OBS外表并行导出数据:通过OBS外表设置的导出模式、导出数据格式等信息来指定导出的数据文件,利用多DN并行的方式,将数据从GaussDB(DWS)数据库导出到外部,存放在OBS对象存储服务器上,从而提高整体导出性能。

    来自:帮助中心

    查看更多 →

  • 关于GDS并行导出

    关于GDS并行导出 使用GDS工具将数据从数据库导出到普通文件系统中,适用于高并发、大量数据导出的场景。 当前版本的GDS支持从数据库导出到管道文件,该功能使GDS的导出更加灵活多变。 当GDS用户的本地磁盘空间不足时: 通过管道文件将从GDS导出的数据进行压缩减少磁盘空间。 通

    来自:帮助中心

    查看更多 →

  • SMP并行执行

    各个算子的并行情况。 非适用场景: 生成计划时间占比很高的短查询场景。 不支持CN上的算子并行。 不支持不能下推的查询并行执行。 不支持子查询subplan的并行,以及包含子查询的算子并行。 资源对SMP性能的影响 SMP架构是一种利用富余资源来换取时间的方案,计划并行之后必定会

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了