AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    克劳德香农与早期机器学习 更多内容
  • 最新动态

    创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级

    来自:帮助中心

    查看更多 →

  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts

    来自:帮助中心

    查看更多 →

  • DLI作业开发流程

    跨源访问可以减少数据的复制和延迟。 跨源访问的必要条件包括“ DLI 数据源网络连通”、“DLI可获取数据源的访问凭证”: DLI数据源网络连通:您可以参考配置DLI数据源网络连通(增强型跨源连接)配置DLI数据源的网络连通。 管理数据源的凭证: 您可以使用DLI提供的跨源认证功能管理访问指定数据源的认证信息。

    来自:帮助中心

    查看更多 →

  • ALM-3276800000 插入的光模块为非华为定制光模块 136192

    故障描述。 对系统的影响 如果是华为早期发货的光模块,对系统没有影响;如果不是,则光模块功能可能会异常。 可能原因 插入的光模块为非华为定制光模块。如果是华为早期发货的光模块,可能因为当时没有记录厂商信息而产生此告警。 处理步骤 如果是华为早期发货的光模块,则可以使用命令transceiver

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法

    来自:帮助中心

    查看更多 →

  • FPGA加速型

    不支持规格变更。 不支持迁移。 不支持自动恢复功能。 由于Fp1型、Fp1c型云服务器包含FPGA卡,在云服务器关机后仍然收费。如需停止计费,请删除弹性云服务器。 后续处理 弹性云服务器创建成功后,可以通过FPGA加速型云服务器提供的硬件开发套件(HDK)和应用开发套件(SDK),进行AEI(Accelerated

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

  • 应用场景

    全链路性能追踪:Web服务、缓存、数据库全栈跟踪,性能瓶颈轻松掌握。 故障智能诊断 业务痛点 海量业务下,出现百种指标监控、KPI数据、调用跟踪数据等丰富但无关联的应用运维数据,如何通过应用、服务、实例、主机和事务等多视角分析关联指标和告警数据,自动完成故障根因分析;如何基于历史数据学习运维经验库,对异常事务智能分析给出可能原因。

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 营销宣传风格文案

    健康管理:家用机器人可以帮助您监测健康数据并提供健康建议。 147. 例如,它们可以记录您的步数、心率、睡眠等健康指标,并提供运动建议、饮食推荐等。 148. 有些机器人还可以智能手环或智能健康设备连接,实时获取您的健康数据。 149. 学习辅助:机器人可以成为您的学习伴侣,提供知识和教育支持。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • ALM-135471444 光模块非认证告警

    告警产生原因 对系统的影响 如果是华为早期发货的光模块,对系统没有影响;如果不是,则光模块功能可能会异常,导致业务中断。 可能原因 插入的光模块为非华为认证光模块。如果是华为早期发货的光模块,可能因为当时没有记录厂商信息而产生此告警。 处理步骤 1. 如果是华为早期发货的光模块,则可以使用命令transceiver

    来自:帮助中心

    查看更多 →

  • 附录

    附录 名词解释 基本概念、云服务简介、专有名词解释: 认证测试中心CTC:是结合华为30年安全经验积累,并结合企业机构的安全合规防护需求,帮助企业机构满足国家及行业法律法规要求,同时实现对安全风险安全事件的有效监控,并及时采取有效措施持续降低安全风险,消除安全事件带来的损失。

    来自:帮助中心

    查看更多 →

  • 修订记录

    新增“异步推理”章节。 更新“发布推理服务”章节。 2020-11-30 优化创建联邦学习工程章节,加入在模型训练服务创建联邦学习工程和联邦学习服务的关系描述。 2020-09-30 数据集详情界面优化,更新新建数据集和导入数据。 模型训练章节,针对AutoML自动机器学习,输出场景化资料。 模型管理界面优化,更新模型管理。

    来自:帮助中心

    查看更多 →

  • 什么是Fabric

    低成本的海量存储系统,华为云的大数据服务组合使用,可大幅度降低成本,帮助企业简单快捷地管理大数据。 分布式Ray Fabric支持分布式计算框架RAY,来帮助客户解决规模日益增大的数据处理和机器学习/深度学习任务对分布式计算的问题,也为数据工程和机器学习工程提供统一的完整Workflow。Fabric

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 钉钉机器人、钉钉企业内部机器人、飞书机器人、企业微信机器人如何获取订阅终端?

    钉钉机器人、钉钉企业内部机器人、飞书机器人、企业微信机器人如何获取订阅终端? 钉钉机器人、钉钉企业内部机器人、飞书机器人和企业微信机器人在添加订阅时,输入的订阅终端地址获取方式如下。 钉钉机器人 在钉钉的群设置中选择“智能群助手”,添加机器人时选择“自定义”,创建完成后即可获得w

    来自:帮助中心

    查看更多 →

  • OptVerse简介

    OptVerse简介 天筹求解器(OptVerse)SDK概述 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习深度学习技术,为企业提供生产计划排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。

    来自:帮助中心

    查看更多 →

  • 和机器人说你好

    单击语义识别图元和最后一个机器人回复图元的连线,选择分支条件。 图7 设置分支 单击最后一个机器人回复图元,设置其回复模板,第一个相同。 单击画布上方的“”保存。 单击画布上方的“”,在弹出的发布页面单击“”。 选择“机器人管理>流程配置>智能机器人”页面,单击“”按钮,将流程接入码新增流程关联。

    来自:帮助中心

    查看更多 →

  • 应用场景

    本节介绍Fabric服务的主要应用场景。 数据工程 高效处理大规模数据,通过并行计算加速数据处理过程,例如数据清洗、转换和聚合。 分布式机器学习 Ray支持分布式训练和调优,可以用于处理大规模数据集和模型,使得模型训练更加高效。 大模型 使用大模型实现智能对话、自动摘要、机器翻译、文本分类、图像生成等任务。

    来自:帮助中心

    查看更多 →

  • 自研代码检查引擎

    自研代码检查引擎 自研代码检查引擎,全面评估代码质量七特征 代码检查服务的核心就是代码检查引擎,高效精准的代码检查引擎能够很好地帮助用户在开发早期快速、准确地发现代码问题,兼顾开发效率产品质量。 代码检查引擎团队凝聚了国内40+博士、海外研究所50+专家、国内外10+老师合作成

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了