云搜索服务 CSS 

 

云搜索服务是一个基于Elasticsearch且完全托管的在线分布式搜索服务,为用户提供结构化、非结构化文本的多条件检索、统计、报表。完全兼容开源Elasticsearch软件原生接口。它可以帮助网站和APP搭建搜索框,提升用户寻找资料和视频的体验;还可以搭建日志分析平台,在运维上进行业务日志分析和监控,在运营上进行流量分析等等。

 
 

    机器学习支持向量回归 更多内容
  • 向量化执行引擎

    ategy为0-2。 level: ERROR GS_232200037 错误码: [%s(%d)] Warning: Partition %d[rows: outer %lu(%ldKB), inner %lu(%ldKB)], after %d times of repartition

    来自:帮助中心

    查看更多 →

  • 向量数据库参数

    相同,只有向量索引为双层索引时生效,可以有效加速查询速度。建议在使用中通过实验获得最优的参数配置。 enable_vectordb 参数说明:设置是否允许创建向量索引,是否允许对向量索引增加、修改和查询。向量数据库详细功能请参见《向量数据库开发指南》手册中的“使用向量数据库”章节。

    来自:帮助中心

    查看更多 →

  • 配置OpenSearch集群向量检索

    配置OpenSearch集群向量检索 向量检索特性介绍 在OpenSearch集群创建向量索引 在OpenSearch集群使用向量索引搜索数据 优化向量检索写入与查询性能 管理向量索引缓存 向量检索的客户端代码示例(Python) 向量检索的客户端代码示例(Java) 父主题: 增强OpenSearch集群搜索能力

    来自:帮助中心

    查看更多 →

  • 功能介绍

    贝叶斯、支持向量机、期望最大EM等,实现遥感影像快速分类 图6 基于K-Means算法的分类结果图 图7 基于正态贝叶斯的分类结果图 支持调用PIE-Engine AI平台的丰富深度学习模型进行实时解译 图8 调用PIE-Engine AI平台模型进行水体解译结果图 支持用户通过

    来自:帮助中心

    查看更多 →

  • 示例:向量场景

    connect(dbname="database", user=user, password=password, host="localhost", port=port, sslmode="verify-ca", sslcert="client.crt",sslkey="client

    来自:帮助中心

    查看更多 →

  • 向量数据类型

    boolvector不支持NULL、Nan、Inf作为元素,当向量中含有NULL值,数据库会报错。 boolvector不能为NULL,当插入、更新或转换NULL值作为向量数据时,数据库会报错。 向量类型的使用 向量类型的使用示例如下: -- 创建含向量类型的表,同时设定数据维度。建表时向量类型必须要指定维度。

    来自:帮助中心

    查看更多 →

  • 向量距离计算接口

    vector_spherical_distance 功能说明:计算两个归一化向量的球面距离(余弦夹角的弧度制表示)。 入参1的类型:floatvector 入参2的类型:floatvector 出参类型:float8 代码示例: gaussdb=# SELECT vector_spherical_distance('[1

    来自:帮助中心

    查看更多 →

  • 向量检索特性介绍

    10000000 ≈ 7.5”。 同时考虑到堆内存的开销,单台“8U 16G”规格的机器可以满足该场景的需求。如果实际场景还有实时写入或更新的需求,则需要考虑申请更大的内存规格。 父主题: 配置Elasticsearch集群向量检索

    来自:帮助中心

    查看更多 →

  • 管理向量索引缓存

    管理向量索引缓存 CSS 向量检索引擎使用C++实现,使用的是堆外内存,该插件提供了接口对向量索引的缓存进行管理。 查看缓存统计信息 GET /_vector/stats 在向量插件实现中,向量索引与Lucene其他类型索引一样,每一个segment构造并存储一份索引文件,在查询

    来自:帮助中心

    查看更多 →

  • AI原生应用引擎基本概念

    处理、机器翻译、 语音识别 、智能问答等领域。 向量化模型 向量化模型是将文本数据转换为数值向量的过程。常用于将文本转换为机器可以处理的形式,以便进行各种任务,如文本分类、情感分析、机器翻译等。 多模态模型 多模态模型是指能够处理多种类型数据(如文本、图像、音频等)的机器学习模型。这

    来自:帮助中心

    查看更多 →

  • OpenSearch集群搜索增强特性介绍

    OpenSearch 1.3.6 配置OpenSearch集群存算分离 切换冷热数据 通过切换冷热数据,可以将部分现查要求秒级返回的数据放在高性能机器上面作为热数据,对于历史数据要求分钟级别返回的数据放在大容量低规格节点作为冷数据。冷热数据切换可以减低存储成本,提升搜索效率。 切换冷热数

    来自:帮助中心

    查看更多 →

  • 学习项目

    管理员可通过让学员报名的方式进行学习资源的控制 操作路径:培训-学习-学习项目-更多-报名设置 图14 报名设置1 图15 报名设置2 复制 学习项目支持复制,便于管理员快速创建/编辑 操作路径:培训-学习-学习项目-更多-复制 图16 复制 可见范围 学习项目支持可见范围内的学员在学员端-知识库进行查看、学习

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 概述

    文件,服务才能读取到;服务运行作业生成的结果、日志文件也会输出到数据目录,供用户查看、获取。 文件管理 文件管理是 可信智能计算 服务提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时

    来自:帮助中心

    查看更多 →

  • 图像搜索

    Native Lives Kubernetes系列课程,带你走进云原生技术的核心 GO语言深入之道 介绍几个Go语言及相关开源框架的插件机制 跟唐老师学习云网络 唐老师将自己对网络的理解分享给大家 智能客服 您好!我是有问必答知识渊博的的智能问答机器人,有问题欢迎随时求助哦! 社区求助

    来自:帮助中心

    查看更多 →

  • 应用场景

    云搜索服务支持对图像、视频、语料等非结构化数据提取的特征向量数据进行最近邻或近似近邻检索。 高效可靠:华为云向量检索引擎,提供优秀的搜索性能以及分布式容灾能力。 索引丰富:支持多种索引算法及相似度度量方式,满足各类应用场景及需求。 “0”学习成本:完全兼容开源ES语法与生态。 图4 向量检索场景

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

  • 修订记录

    删除 实体链接 2019-07-08 新增机器翻译内容: 使用前必读 API概览 机器翻译服务接口说明 错误码 2019-06-28 刷新错误码。 2019-03-22 增加接口: 文本相似度(基础版) 句向量 老接口修改为废弃接口。 句向量(废弃) 2019-01-30 第一次正式发布。

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 向量函数和操作符

    出参类型:integer 代码示例: gaussdb=# SELECT vector_typmod_in( '{1}' ); 向量数据类型成员仅支持单精度。 向量间计算仅支持相同维度,如果维度不同将报错。 floatvector支持向量加减操作,点乘操作由函数(inner_product)完成。

    来自:帮助中心

    查看更多 →

  • 在OpenSearch集群创建向量索引

    native.cache.circuit_breaker.enabled 是否开启堆外内存熔断。 默认值:true。 native.cache.circuit_breaker.cpu.limit 向量索引堆外内存使用上限。 假设使用128GB内存的机器且堆内存大小为31GB,默认堆外内存使用上限为(128

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了