AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习训练模型 更多内容
  • 大模型开发基本概念

    自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围:

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • ModelArts

    ModelArts不仅支持自动学习功能,还预置了多种已训练好的模型,同时集成了Jupyter Notebook,提供在线的代码开发环境。 业务开发者 使用自动学习构建模型 AI初学者 使用自定义算法构建模型 免费体验 ModelArts 免费体验CodeLab 自动学习 口罩检测(使用新版自动学习实现物体检测)

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围:

    来自:帮助中心

    查看更多 →

  • 最新动态

    LR纵向联邦学习主要用于具有线性边界的二分类问题,支持用户双方训练联合逻辑回归(LR)模型。相较于单方训练,纵向联邦LR训练覆盖用户双方特征,模型预测精度更高。 TICS 采用SEAL同态加密确保双方数据交互安全,通过批处理技术进一步提升联邦训练性能。 公测 创建纵向联邦学习作业 2 样本对齐支持PSI算法

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    train_labels, epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 准备模型训练代码

    准备模型训练代码 预置框架启动文件的启动流程说明 开发用于预置框架训练的代码 开发用于 自定义镜像 训练的代码 自定义镜像训练作业配置节点间SSH免密互信 父主题: 使用ModelArts Standard训练模型

    来自:帮助中心

    查看更多 →

  • 模型训练存储加速

    # 加载模型学习参数 model.load_state_dict(checkpoint['net']) # 加载优化器参数 optimizer.load_state_dict(checkpoint['optimizer']) #

    来自:帮助中心

    查看更多 →

  • 模型训练计费项

    包年/包月 创建桶不收取费用,按实际使用的存储容量和时长收费 弹性文件服务SFS Turbo 使用专属资源池进行训练时,支持挂载多个弹性文件服务SFS Turbo。用于存储模型训练的代码及输入输出数据。 具体费用可参见弹性文件服务价格详情。 按需计费 包年/包月 按文件系统所占用的存储空间容量和使用时长收费

    来自:帮助中心

    查看更多 →

  • 模型文件说明(训练)

    模型文件说明(训练) Octopus模型管理模块,支持用户上传模型,并将其用于模型评测、模型编译任务。如果需要将模型用于内置评测模板评测,除模型文件外,需另外包含推理启动文件: customer_inference.py 仅当需要使用内置评测指标计算时需要添加推理启动文件,文件名称可自定义,将该文件置于模型目录下。

    来自:帮助中心

    查看更多 →

  • 训练CV大模型

    训练CV大模型 CV大模型训练流程与选择建议 创建CV大模型训练任务 查看CV大模型训练状态与指标 发布训练后的CV大模型 管理CV大模型训练任务 CV大模型训练常见报错与解决方案 父主题: 开发盘古CV大模型

    来自:帮助中心

    查看更多 →

  • 训练预测大模型

    训练预测大模型 预测大模型训练流程与选择建议 创建预测大模型训练任务 查看预测大模型训练状态与指标 发布训练后的预测大模型 管理预测大模型训练任务 预测大模型训练常见报错与解决方案 父主题: 开发盘古预测大模型

    来自:帮助中心

    查看更多 →

  • 模型训练使用流程

    模型训练使用流程 AI模型开发的过程,称之为Modeling,一般包含两个阶段: 开发阶段:准备并配置环境,调试代码,使代码能够开始进行深度学习训练,推荐在ModelArts开发环境中调试。 实验阶段:调整数据集、调整超参等,通过多轮实验,训练出理想的模型,推荐在ModelArts训练中进行实验。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: AI

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    假设您有如下数据集(只展示部分数据),由于数据不够完整,如job、gender等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是多类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1

    来自:帮助中心

    查看更多 →

  • 如何访问模型训练服务

    用户也可以直接通过账号登录。首次登录后请及时修改密码,并定期修改密码。 单击“登录”,进入NAIE服务官网。 依次选择“AI服务 > AI服务 > 模型训练服务 > 模型训练服务”,进入模型训练服务介绍页面。 单击“进入服务”,进入模型训练服务页面。 父主题: 产品介绍

    来自:帮助中心

    查看更多 →

  • 模型训练服务首页简介

    模型训练服务首页 图2 模型训练服务首页 模型训练服务首页介绍如表1所示。 表1 模型训练服务首页说明 区域 参数名称 参数说明 1 当前服务所属的品牌名称。 单击服务名称图标下拉框,从下拉框中选择服务名称,可以进入对应服务的首页界面。 2 华北-北京一 用户账户所属Region。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了