AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习向量化权重 更多内容
  • 使用SmoothQuant量化

    --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step6

    来自:帮助中心

    查看更多 →

  • 设置读权重

    配读写请求,需要打开读写分离开关后设置读权重来实现。 设置了实例的读权重后,主实例和只读实例将按照以下公式处理读请求。 主实例处理读请求:主实例读权重/主实例和只读实例读权重总数 只读实例处理读请求:只读实例读权重/主实例和只读实例读权重总数 例如:RDS for MySQ L实例

    来自:帮助中心

    查看更多 →

  • 配置权重解析

    在这种配置中,通过“权重”参数,可以设置这3条解析记录在解析响应消息中所占比重,实现将用户的访问按比例路由到各个 服务器 上。 权重解析对解析请求的负载均衡更为精确,本章节将介绍如何配置公网 域名 权重解析。 约束与限制 目前最多支持对20条同域名同线路的记录集配置权重权重解析规划 网站有

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:W4A16 per-group/per-channel,

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:W4A16 per-group/per-channel,W8A16

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)

    来自:帮助中心

    查看更多 →

  • 版本说明和要求

    # 安装量化模块的脚本 ├──AutoAWQ # W4A16量化工具 ├──convert_awq_to_npu.py # awq权重转换脚本 ├──quantize.py # 昇腾适配的量化转换脚本

    来自:帮助中心

    查看更多 →

  • W4A16量化

    ight-activation量化和kvcache量化量化的一般步骤是:1、对浮点类型的权重镜像量化并保存量化完的权重;2、使用量化完的权重进行推理部署。 什么是W4A16量化 W4A16量化方案能显著降低模型显存以及需要部署的卡数(约75%)。大幅降低小batch下的增量推理时延。

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    model:模型路径。 Step4 启动AWQ量化服务 参考部署推理服务,使用量化权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q awq 或者--quantization awq 父主题: 推理模型量化

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    --int8_kv_cache 运行完成后,会在output_dir下生成量化后的权重量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    Step2 权重格式转换 AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,需要进行权重转换。 进入llm_tools代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。如需保留之前权重格式,请在转换前备份。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    --int8_kv_cache 运行完成后,会在output_dir下生成量化后的权重量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    特征的多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 已发布区域:北京四、北京二

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考步骤六 启

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    model:模型路径。 Step4 启动AWQ量化服务 参考部署推理服务,使用量化权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q awq 或者--quantization awq 父主题: 推理模型量化

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    model:模型路径。 Step4 启动AWQ量化服务 参考部署推理服务,使用量化权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q awq 或者--quantization awq 父主题: 推理模型量化

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step6

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景的合规实践 该示例模板中对应的合规规则的说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护的版本 cce CC

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了