AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习线性分类器 更多内容
  • 训练分类器

    参与模板分类的模型训练。 在“应用开发>训练分类器”页面,单击“添加已有模板”。 弹出添加已有模板对话框。 勾选模板,确认模板信息后,单击“确定”。 “应用开发>训练分类器”页面会显示新添加的模板。 训练分类器 单击“开始训练”。服务进入“应用开发>评估”页面,开始训练模型。模型

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    2.0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    账号下的所有 CTS 追踪器未追踪指定的OBS桶,视为“不合规” mrs-cluster-kerberos-enabled MRS 集群开启kerberos认证 mrs MRS集群未开启kerberos认证,视为“不合规” mrs-cluster-no-public-ip MRS集群未绑定弹性公网IP mrs

    来自:帮助中心

    查看更多 →

  • 最新动态

    创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 敏感数据发现函数

    column_name。 scan_classifier:指定使用的分类器,支持指定email、creditcard、phonenumber、chinesename、encryptedcontent 5种分类器,多选可以用逗号分隔,或者使用all选中所有分类器。 返回值类型:record 示例请

    来自:帮助中心

    查看更多 →

  • 敏感数据发现函数

    column_name。 scan_classifier:指定使用的分类器,支持指定email、creditcard、phonenumber、chinesename、encryptedcontent 5种分类器,多选可以用逗号分隔,或者使用all选中所有分类器。 返回值类型:record 示例请

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 删除应用

    在“我的应用”页签下,选择应用并单击“操作”列的“查看”。 进入“应用资产”页面。 图1 进入应用资产 在“分类器列表”页签,选择多模板名称,单击操作列的“删除”。 弹出“确认删除”对话框。 图2 删除分类器 单击“确认”,删除分类器。 父主题: 多模板分类工作流

    来自:帮助中心

    查看更多 →

  • 评估应用

    在“应用资产”页面,默认进入“分类器列表”页签,单击已有模板操作列的“评估”。进入“评估”页面。 图1 评估应用 在“应用开发”页面,依次完成“上传模板图片”、“定义预处理”、“框选参照字段”、“框选识别区”、“训练分类器”步骤,单击“下一步”,进入“评估”页面。 图2 评估应用 评估分类器 通过上传

    来自:帮助中心

    查看更多 →

  • 机器未重启

    原因分析 该机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 must log in to complete the current configuration or the configuratio\r\nn in progress must be

    来自:帮助中心

    查看更多 →

  • 使用多模板工作流开发应用

    确定每个模板上传训练集后,单击“开始训练”。 服务进入“应用开发>评估”页面,开始训练模型。 模型训练完成后,可在“应用开发>评估”页面评估分类器和模板,详情请见步骤8:评估模板。 步骤8:评估模板 在“应用开发>评估”页面包含分类器评估和模板评估 ,其中分类器评估用于识别模板类型,模板评估用于识别对应模板中的文字。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 上传模板图片

    并提取这两种格式发票上的关键字段。 前提条件 已授权ModelArts服务和对象存储服务(OBS)。 已在 文字识别 套件控制台选择“多模板分类工作流”新建应用,详情请见新建应用。 提前准备模板图片以及训练分类器的数据集,其要求请见数据要求。 数据要求 保证图片质量:不能有损坏的图片

    来自:帮助中心

    查看更多 →

  • 评估

    在“应用资产”页面,默认进入“分类器列表”页签,单击已有模板操作列的“评估”。进入“评估”页面。 图1 评估 在“应用开发”页面,依次完成“上传模板图片”、“定义预处理”、“框选参照字段”、“框选识别区”、“模板总览”步骤,单击“下一步”,进入“评估”页面。 图2 评估 评估分类器 通过上传测试

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理 文件管理是可信智能计算服务提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • 上传模板图片

    作”列的“查看”。 进入“应用资产”页面。 图1 进入应用资产 单击“创建分类器”。 进入“应用开发”页面,开始开发应用。 图2 创建分类器 填写基本信息 在“应用开发>上传模板图片”页面,输入多模板分类器的“名称”和“描述”。 图3 上传模板图片 然后上传模板图片,可选择新增模板配置。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了