AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习模型的覆盖率 更多内容
  • 计费说明

    据,训练深度学习机器学习模型,形成相关验证报告。复杂场景工作量预计不超过25人天 900,000.00 每套 AI算法原型开发-铂金版 对业务场景为极特殊复杂场景企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习机器学习模型,形成相关验证报告。极特殊的复杂场景工作量预计不超过17人天

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习图像分类或物体检测算法时,标注完成数据在进行模型训练后,训练结果为图片异常。针对不同异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 基本概念

    在旧版体验式开发模式下,模型训练服务支持特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角图标中“数据处理”菜单下面的数据处理算子。 模型包 将模型

    来自:帮助中心

    查看更多 →

  • 更新MaaS模型服务的模型权重

    参考创建我模型,用待更新模型权重文件新建一个我模型。关键参数请参见表1。 表1 创建模型关键参数说明 参数 说明 来源模型 选择和待升级模型服务“部署模型”同一个模型框架。 权重设置与词表 选择“自定义权重”。 选择自定义权重路径 选择存放待更新模型权重文件OBS路径,必须选择到模型文件夹。

    来自:帮助中心

    查看更多 →

  • 自动学习生成的模型,存储在哪里?支持哪些其他操作?

    自动学习生成模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成模型,不支持下载使用。 图1 自动学习生成模型

    来自:帮助中心

    查看更多 →

  • 最新动态

    相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少情况,联合多个参与者共同样本不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级 在实际应用中,升级、回滚是一个常见场景, TICS

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定方法和标准,来评测一个模型预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    取值范围:字符型,需要符合数据属性名命名规范。 attribute_name 在监督学习任务中训练模型目标列名(可进行简单表达式处理)。 取值范围:字符型,需要符合数据属性名命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集特征数据不够理想,而此数据集数据类别和一份理想数据集部分重合或者相差不大时候,可以使用特征迁移功能,将理想数据集特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    智能问答机器人版本 智能问答机器人支持基础版、高级版、专业版、旗舰版四种规格,各规格差异如表1所示。 表1 机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    Learning,简称SSL)是一种机器学习方法,它从未标记数据中提取监督信号,属于无监督学习一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习 有监督学习机器学习任务一种。它从有标

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时数据表,记录机器学习模型配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    取值范围:字符型,需要符合数据属性名命名规范。 attribute_name 在监督学习任务中训练模型目标列名(可进行简单表达式处理)。 取值范围:字符型,需要符合数据属性名命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时数据表,记录机器学习模型配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: AI

    来自:帮助中心

    查看更多 →

  • 什么是Workflow

    点之间关系描述组成。开发者通过定义节点执行内容和节点执行顺序定义DAG。绿色矩形表示为一个节点,节点与节点之间连线则是节点关系描述。整个DAG执行其实就是有序任务执行模板。 图3 工作流 Workflow提供样例 ModelArts提供了丰富基于场景工作流样例,用户可以前往AI

    来自:帮助中心

    查看更多 →

  • Kubeflow部署

    Kubeflow部署 Kubeflow诞生背景 基于Kubernetes构建一个端到端AI计算平台是非常复杂和繁琐过程,它需要处理很多个环节。如图1所示,除了熟知模型训练环节之外还包括数据收集、预处理、资源管理、特性提取、数据验证、模型管理、模型发布、监控等环节。对于一个AI算

    来自:帮助中心

    查看更多 →

  • ModelArts

    使用大模型在ModelArts Standard创建AI应用部署在线服务 自定义镜像 用于推理部署 从0-1制作自定义镜像并创建AI应用 05 自动学习 ModelArts自动学习是帮助人们实现AI应用低门槛、高灵活、零代码定制化模型开发工具。 自动学习简介 自动学习功能介绍 项目分类

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时数据表,记录机器学习模型配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 标准覆盖率统计信息

    标准覆盖率统计信息 功能介绍 查看某个数据标准在所有模型字段中覆盖率,即使用该标准字段占总字段百分比。 调用方法 请参见如何调用API。 URI GET /v2/{project_id}/design/definitions/statistic/{id} 表1 路径参数 参数

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    创建数据预处理作业 数据预处理是训练机器学习模型一个重要前置步骤,其主要是通过转换函数将特征数据转换成更加适合算法模型特征数据过程。TI CS 特征预处理功能能够实现对数据探索、分析、规整以及转换,以达到数据在训练模型中可使用、可实用,在TICS平台内完成数据处理到建模闭环。 假设您有如下数

    来自:帮助中心

    查看更多 →

  • 自动学习中部署上线是将模型部署为什么类型的服务?

    自动学习中部署上线是将模型部署为什么类型服务? 自动学习中部署上线是将模型部署为在线服务,您可以添加图片或代码进行服务测试,也可以使用URL接口调用。 部署成功后,您也可以在ModelArts管理控制台“部署上线 > 在线服务”页面中,查看到正在运行服务。您也可以在此页面停止服务或删除服务。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了