组织 Organizations

组织 Organizations

组织(Organizations)为企业用户提供多账号关系的管理能力。用户可以将多个华为云账号整合到创建的组织中,并可以在组织中设置治理策略

组织(Organizations)为企业用户提供多账号关系的管理能力。用户可以将多个华为云账号整合到创建的组织中,并可以在组织中设置治理策略

免费使用

    机器学习量化策略 更多内容
  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    convert_awq_to_npu.py --model /home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。 Step4 启动AWQ量化服务 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用llm-compressor工具量化

    使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库:

    来自:帮助中心

    查看更多 →

  • 机器未重启

    原因分析 该机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 must log in to complete the current configuration or the configuratio\r\nn in progress must be

    来自:帮助中心

    查看更多 →

  • 安全性云服务介绍

    DBSS:基于机器学习机制和大数据分析技术,提供数据库审计,SQL注入攻击检测,风险操作识别等功能,保障云上数据库的安全。 合规与隐私保护 合规中心:为您提供全方位的合规遵从性指导和资源 云审计 服务 CTS :提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step6

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,若指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908)

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911)

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的服务器后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了