AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习精度要求召回率准确度 更多内容
  • 硬件要求

    硬件要求 根据互动教学平台服务智慧教室功能性拓展,满足教室录播、外接摄像机、AV集成等需求,推荐硬件: 老师屏:ideaHub Pro 86寸、OPS硬件配置:i7十代CPU、16G内存、256G SSD。 学生屏:ideaHub Edu 86/65寸、OPS硬件配置:i5八代CPU、8G内存、128G

    来自:帮助中心

    查看更多 →

  • 部署要求

    部署要求 本章节描述CloudPond部署要求(包括场地要求和网络要求),请参考每项要求初步评估您的本地数据中心是否适合安装CloudPond设备。 如发现不满足的情况,您可以先进行线上注册边缘小站和提交订单,随后由华为云技术支持团队与您联系沟通场地工勘事宜,您再进行相应整改即可。

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    于训练文本分类模型。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 一些常用的指标,如精准召回、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于分类自己所上传的文字内容,也可直接调用对应的API。

    来自:帮助中心

    查看更多 →

  • 在Elasticsearch集群创建向量索引

    使用VectorQuery进行查询。 默认值:false。 algorithm 索引算法。仅当“indexing”为“true”时生效。 可选值: FLAT:暴力计算,目标向量依次和所有向量进行距离计算,此方法计算量大,召回100%。适用于对召回准确要求极高的场景。 GRAP

    来自:帮助中心

    查看更多 →

  • 在OpenSearch集群创建向量索引

    使用VectorQuery进行查询。 默认值:false。 algorithm 索引算法。仅当“indexing”为“true”时生效。 可选值: FLAT:暴力计算,目标向量依次和所有向量进行距离计算,此方法计算量大,召回100%。适用于对召回准确要求极高的场景。 GRAP

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    账号下的所有 CTS 追踪器未追踪指定的OBS桶,视为“不合规” mrs-cluster-kerberos-enabled MRS 集群开启kerberos认证 mrs MRS集群未开启kerberos认证,视为“不合规” mrs-cluster-no-public-ip MRS集群未绑定弹性公网IP mrs

    来自:帮助中心

    查看更多 →

  • 在线服务

    进行权重累加(ABS)统计。 点击权重:当同时选择点击预估和综合排序进行重排序时,汇总分数时点击相关得分的权重值。 综合排序权重:当同时选择点击预估和综合排序进行重排序时,汇总分数时综合排序相关得分的权重值。 融合方式:当同时选择点击预估和综合排序进行重排序时,汇总分数

    来自:帮助中心

    查看更多 →

  • 位置精度(position

    位置精度(position_confidence) 数值 含义 0 不具备或不可用 1 500米 2 200米 3 100米 4 50米 5 20米 6 10米 7 5米 8 2米 9 1米 10 0.5米 11 0.2米 12 0.1米 13 0.05米 14 0.02米 15

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。

    来自:帮助中心

    查看更多 →

  • 精度问题诊断

    当text_encoder模型为onnx模型,其余模型为mindir模型时,能够得到和标杆数据相同的输出,因此可以判断出转换得到的text_encoder模型是产生pipeline精度误差的根因。通过下一小节可以进一步确认模型精度的差异。 父主题: 模型精度调优

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models at Evaluation)。 步骤一:配置精度测试环境 获取精度测试代码。精度测试代码存

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    ,该工具为离线测评,不需要启动推理服务,目前支持大语言模型。 约束限制 确保容器可以访问公网。 使用opencompass工具需用vllm接口启动在线服务。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证

    来自:帮助中心

    查看更多 →

  • 固定精度型

    TABLE decimal_t1; --创建NUMERIC 类型表 CREATE TABLE tb_numberic_hetu(col1 NUMERIC(9,7)); --插入数据 INSERT INTO tb_numberic_hetu values(9.12); --查看数据

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 数据准备

    点和检查点,控制点用于优化空三的精度,可提升模型精度,也可实现地方坐标系或85高程系统的转换。检查点用于检查空三的精度,可通过检查点来定量对精度做评价。在进行三维重建时,用户可在添加影像后导入像控点,利用像控点提高空三的精度和鲁棒性、检查空三的精度以及将空三结果转换到指定的像控点坐标系下,提高重建结果的准确度。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了