AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习加载模型 更多内容
  • 什么是数据加载?

    什么是数据加载? 数据加载提供简便、高效的数据加载能力,帮助用户完成多种数据源之间的数据迁移工作。 父主题: 数据加载

    来自:帮助中心

    查看更多 →

  • 证书加载错误

    证书加载错误 问题描述 看到此错误时,说明verifyPeer选项被设置为true,却没有配置证书,go-chassis默认为false,不会自己更改配置。 解决方案 如果本来并不打算配置证书的,说明是开发者在开发或者持续集成的某个环节中自行更改的,请仔细排查代码从提交到部署环节中,是谁打开的此选项。

    来自:帮助中心

    查看更多 →

  • 加载Hive数据

    指的是当前连接的“HiveServer”的本地文件系统的路径,同时由于当前的“HiveServer”是集群式部署的,客户端在连接时是随机连接所有“HiveServer”中的一个,需要注意当前连接的“HiveServer”的本地文件系统中是否存在需要加载的文件。在无法确定当前连接的

    来自:帮助中心

    查看更多 →

  • 最新动态

    续特征选择、模型训练的数据集。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 修订记录

    变换、优化模型训练、特征迁移增加迁移评估等,对应刷新JupyterLab开发平台。 模型训练新增创建联邦学习工程及其服务,对应新增创建联邦学习工程。 模型包支持对Jupyterlab环境归档的模型创建模型包、支持对特定模型包新建联邦学习实例、支持对已发布推理服务的模型包更新发布推理服务,对应刷新模型管理。

    来自:帮助中心

    查看更多 →

  • ModelArts

    ModelArts不仅支持自动学习功能,还预置了多种已训练好的模型,同时集成了Jupyter Notebook,提供在线的代码开发环境。 业务开发者 使用自动学习构建模型 AI初学者 使用自定义算法构建模型 免费体验 ModelArts 免费体验CodeLab 自动学习 口罩检测(使用新版自动学习实现物体检测)

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围:

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    CREATE MODEL 功能描述 训练机器学习模型并保存模型。 注意事项 模型名称具有唯一性约束,注意命名格式。 AI训练时长波动较大,在部分情况下训练运行时间较长,设置的GUC参数statement_timeout时长过短会导致训练中断。建议statement_timeout设置为0,不对语句执行时长进行限制。

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 模型推理代码编写说明

    model_path) 初始化方法,适用于深度学习框架模型。该方法内加载模型及标签等(pytorch和caffe类型模型必须重写,实现模型加载逻辑)。 __init__(self, model_path) 初始化方法,适用于机器学习框架模型。该方法内初始化模型的路径(self.model_pa

    来自:帮助中心

    查看更多 →

  • 什么是Workflow

    MLOps(Machine Learning Operation)是“机器学习”(Machine Learning)和“DevOps”(Development and Operations)的组合实践。机器学习开发流程主要可以定义为四个步骤:项目设计、数据工程、模型构建、部署落地

    来自:帮助中心

    查看更多 →

  • 模型训练

    参数设置,重新选择使用的模型,或关闭特征搜索。 其中“排行榜”展示所有训练出的模型列表,支持对模型进行如下操作: 单击模型所在行对应“操作”列的“详情”,查看模型超参取值和模型评分结果。 单击模型所在行对应“操作”列的“预测”,在新增的“AutoML模型预测”内容中,选择测试数据

    来自:帮助中心

    查看更多 →

  • 为什么Modelarts训练的模型无法加载到HiLens Studio中?

    Kit上都能运行。 解决方法 如果需要在HiLens Studio上加载模型,请在使用模型之前,在HiLens Studio中进行模型转换,详细操作请见导入/转换模型。 升级后的HiLens Studio使用模型配置文件兼容不同版本的模型,适配新版本HiLens Studio详情请参见适配新版本HiLens

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    智能问答机器人版本 智能问答机器人支持基础版、高级版、专业版、旗舰版四种规格,各规格的差异如表1所示。 表1 机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习

    来自:帮助中心

    查看更多 →

  • Kubeflow部署

    平台,这个过程耗时费力,而且需要很多的知识积累。 图1 模型训练环节 Kubeflow诞生于2017年,Kubeflow项目是基于容器和Kubernetes构建,旨在为数据科学家、机器学习工程师、系统运维人员提供面向机器学习业务的敏捷部署、开发、训练、发布和管理平台。它利用了云原

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    驾驶、大模型、AIGC、科学AI等不同行业。AI人工智能的实现需要大量的基础设施资源,包括高性能算力,高速存储和网络带宽等基础设施,即“大算力、大存力、大运力”的AI基础大设施底座,让算力发展不要偏斜。 从过去的经典AI,到今天人人谈论的大模型,自动驾驶,我们看到AI模型的参数及

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 启动加载任务

    启动加载任务 操作步骤 在数据服务左侧导航,选择“工具箱>数据开发>数据加载”。 在任务管理列表中,在需要启动的任务对应的“操作”列下,单击。 在任务列表右上角,勾选自动刷新前面的复选框,刷新任务列表。 (可选)查看调度监控:在需要查看的任务对应的“任务名称”列下,单击任务名称,选择“调度监控”页签。

    来自:帮助中心

    查看更多 →

  • 参数预加载

    参数预加载 参数预加载支持输入参数时请求云服务api获取预加载选项,当前支持以下六种api接口: 表1 支持的api接口说明 属性 描述 hwc:ecs:flavors E CS 的Flavor hwc:vpc:myVpcs VPC列表 hwc:vpc:mySubnets Subnet子网列表

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了