AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习的监督式学习 更多内容
  • 学习项目

    管理员可通过让学员报名方式进行学习资源控制 操作路径:培训-学习-学习项目-更多-报名设置 图14 报名设置1 图15 报名设置2 复制 学习项目支持复制,便于管理员快速创建/编辑 操作路径:培训-学习-学习项目-更多-复制 图16 复制 可见范围 学习项目支持可见范围内学员在学员端-知识库进行查看、学习

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联服务器后,输出学习结果中可能存在一些特征不明显可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择“自动确认可

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    CCE集群版本为停止维护版本,视为“不合规” cce-cluster-oldest-supported-version CCE集群运行非受支持最旧版本 cce 如果CCE集群运行是受支持最旧版本(等于参数“最旧版本支持”),视为“不合规” cce-endpoint-public-access

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    Learning,简称SSL)是一种机器学习方法,它从未标记数据中提取监督信号,属于无监督学习一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习监督学习机器学习任务一种。它从有标

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习方式帮助不具备算法开发能力业务开发者实现算法开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练参数自动化选择和模型自动调优自动学习功能,让零AI基础业务开发者可快速完成模型训练和部署。 M

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见分类有3种: 监督学习:利用一组已知类别的样本调整分类器参数,使其达到所要求性能过程,也称为监督训练或有教师学习。常见有回归和分类。 非监督学习:在未加标签数据中,试图找到隐藏结构。常见有聚类。 强化学习:智能系统从环境到行为映射学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型低门槛、高灵活、零代码定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 职业认证考试的学习方法

    职业认证考试学习方法 华为云职业认证 提供在线学习/导师面授+在线测试+真实环境实践,理论与实践结合学习模式,帮助您轻松通过认证。 您可以通过如下途径进行职业认证学习: 进入华为云开发者学堂职业认证,按照页面指引在线学习认证课程。 在HALP处报名认证培训课程,由专业导师进行面授培训。

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    通过调用接口获取用户Token接口获取。 X-Language 是 String 根据自己偏好语言来获取不同语言返回内容,zh-cn或者en_us Content-Type 是 String 发送实体MIME类型 响应参数 无 请求示例 删除联邦学习作业 delete https://x.x.x.x:123

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    通过调用接口获取用户Token接口获取。 X-Language 是 String 根据自己偏好语言来获取不同语言返回内容,zh-cn或者en_us Content-Type 是 String 发送实体MIME类型 表3 请求Body参数 参数 是否必选 参数类型 描述 name 是 String

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测能力。 目前可支持模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供一站深度学习平台服务,内置大量优化网络模型,以便捷、高效方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测能力。 目前可支持模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 无监督领域知识数据量无法支持增量预训练,如何进行模型学习

    请根据以上句子/段落,续写为一段不少于xx个字文本。”,再将回答设置为符合要求段落。 扩写:根据段落其中一句或者一段续写成完整段落。 若您监督文档没有任何结构化信息,可以将有监督问题设置为“以下是一篇文章某个句子:xxx/某个段落:xxx。请根据以上句子/段落

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    新建作业 在弹出界面进行数据选择,选择两方数据集作为整个作业数据集,必须选择一个当前代理数据集,另一个数据集可以来自空间中任意一方。两方数据集中一方数据集只含有特征,另一方数据集必须含有标签。 重试:开关开启后,执行失败作业会根据配置定时进行重试,仅对开启后执行作业生效

    来自:帮助中心

    查看更多 →

  • 时序数据标注介绍

    数据标注对于KPI异常检测非常重要,可以有效提升监督学习训练过程中KPI异常检测准确率,在无监督学习中对模型做验证评估。 监督学习:使用标注工具对原始数据进行标注,并将标注数据用于训练。用户基于训练结果确认并更新数据标注,将标注数据重新用于训练,提升KPI检测准确率。 无监督学习:使用标注工具对原始数据

    来自:帮助中心

    查看更多 →

  • 重新学习服务器

    重新学习服务器 如果已完成进程白名单扩展,但仍然存在较多可信进程运行误报或您服务器业务存在变更,您可以设置HSS重新学习服务器,校准HSS应用进程情报数据,避免误报。 重新学习服务器 登录管理控制台。 在页面左上角选择“区域”,单击,选择“安全与合规 > 企业主机安全”,进入主机安全平台界面。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    介绍神经网络定义与发展,深度学习训练法则,神经网络类型以及深度学习应用 图像识别、语音识别、机器翻译编程实验 与图像识别、语言识别、机器翻译编程相关实验操作 本培训为线下面授形式,培训标准时长为6天,每班人数不超过20人。 验收标准 按照培训服务申请标准进行验收,客户以官网

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型目标列名(可进行简单表达式处理)。 取值范围:字符型,需要符合数据属性名命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型超参名称。 取值范围:

    来自:帮助中心

    查看更多 →

  • 保存横向联邦学习作业

    通过调用接口获取用户Token接口获取。 X-Language 是 String 根据自己偏好语言来获取不同语言返回内容,zh-cn或者en_us Content-Type 是 String 发送实体MIME类型 表3 请求Body参数 参数 是否必选 参数类型 描述 description

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型目标列名(可进行简单表达式处理)。 取值范围:字符型,需要符合数据属性名命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型超参名称。 取值范围:

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了