AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习代价函数之交叉熵 更多内容
  • GS

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: AI

    来自:帮助中心

    查看更多 →

  • 下载数据之消费位移

    下载数据消费位移 消费位移确认有自动提交与手动提交两种策略,在创建DISKafkaConsumer对象时,通过参数enable.auto.commit设定,true表示自动提交(默认)。 自动提交策略由消费者协调器(Coordinator)每隔${auto.commit.interval

    来自:帮助中心

    查看更多 →

  • Scrum实践之团队

    Scrum实践团队 随着近些年敏捷在行业及企业的推广,越来越多的企业意识到了敏捷所带来的好处,并愿意在敏捷上有所投入,从而越来越多的朋友加入了敏捷从业者行列,愿意学习敏捷知识。 本文内容推荐有基本敏捷常识及有一定Scrum理论基础的朋友们阅读,并按实际场景进行参考。 定义和特性说明

    来自:帮助中心

    查看更多 →

  • ALM-12040 系统熵值不足

    eged工具,且五次值检查中,至少有一次值大于等于100,则告警恢复。 MRS 3.1.2及之前版本: 每天零点系统检查值,每次检查都连续检查五次,首先检查是否启用并正确配置了rng-tools工具或者haveged工具,如果没有配置,则继续检查当前值,如果五次均小于100,则上报故障告警。

    来自:帮助中心

    查看更多 →

  • Scrum实践之冲刺

    Scrum实践冲刺 定义和特性说明 定义 Scrum框架是目前在敏捷圈内比较流行的,下图展示了Scrum框架实践的全景图。 在Scrum框架中,工作在建议时间长度的迭代中循环做,这个迭代叫做冲刺。 各个冲刺提交的工作内容必须是对用户和客户来说具有确 定价 值的交付物。通常来说,在每

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    训练相关概念说明 概念名 说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它

    来自:帮助中心

    查看更多 →

  • 配置LLVM

    Virtual Machine)动态编译技术可以为每个查询生成定制化的机器码用于替换原本的通用函数。通过减少实际查询时冗余的条件逻辑判断、虚函数调用并提高数据局域性,从而达到提升查询整体性能的目的。 由于LLVM需要消耗额外的时间预生成IR中间态表示并编译成机器码,因此在小数据量

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 机器未重启

    原因分析 该机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 must log in to complete the current configuration or the configuratio\r\nn in progress must be

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 产品术语

    产品术语 A AI应用市场 提供AI模型的交易市场,是AI消费者接触NAIE云服务的线上门户,是AI消费者对已上架的AI模型进行查看、试用、订购、下载和反馈意见的场所。 AI引擎 可支持用户进行机器学习、深度学习、模型训练的框架,如Tensorflow、Spark MLlib、MXNe

    来自:帮助中心

    查看更多 →

  • Classroom入门视频指导有哪些?

    Classroom入门视频指导有哪些? 通过视频教程让您快速上手Classroom,本套视频为教师、学生提供快速的Classroom入门指导,用户可以通过半小时地学习,掌握百分八十的基本操作,如表1所示。 表1 视频指导 角色 Classroom视频指导(点击链接播放视频) 教师 Classroom 老师-课堂成员管理

    来自:帮助中心

    查看更多 →

  • 配置LLVM

    Virtual Machine)动态编译技术可以为每个查询生成定制化的机器码用于替换原本的通用函数。通过减少实际查询时冗余的条件逻辑判断、虚函数调用并提高数据局域性,从而达到提升查询整体性能的目的。 由于LLVM需要消耗额外的时间预生成IR中间态表示并编译成机器码,因此在小数据量

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理 文件管理是可信智能计算服务提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。

    来自:帮助中心

    查看更多 →

  • 特征操作

    在“特征操作流总览”区域会新增一个“卡方校验”节点。 信息 信息是通过计算数据集的特征列与标签列之间的相关性筛选出有价值的特征列。相关性越大,信息越大;相关性越小,信息越小。将信息由大到小排序,筛选出信息较大的有价值的特征列。 信息操作方法如下。 单击表头,选中一个特征列作为标签列。

    来自:帮助中心

    查看更多 →

  • Volcano调度概述

    Volcano是一个基于Kubernetes的批处理平台,提供了机器学习、深度学习、生物信息学、基因组学及其他大数据应用所需要而Kubernetes当前缺失的一系列特性,提供了高性能任务调度引擎、高性能异构芯片管理、高性能任务运行管理等通用计算能力。 Volcano Scheduler Volcano

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    假设您有如下数据集(只展示部分数据),由于数据不够完整,如job、gender等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是多类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了