AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习scale 更多内容
  • 使用kv-cache-int8量化

    量化脚本的路径是examples/llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数。 使用tensorRT量化工具进行模型量化。 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化

    来自:帮助中心

    查看更多 →

  • 计费说明

    发或者优化服务,基于脱敏数据,训练深度学习机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天 600,000.00 每套 AI算法原型开发-专业版 对业务场景为复杂场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习机器学习模型,形成相

    来自:帮助中心

    查看更多 →

  • 重新学习服务器

    重新学习服务器 如果已完成进程白名单扩展,但仍然存在较多可信进程运行误报或您的服务器业务存在变更,您可以设置HSS重新学习服务器,校准HSS的应用进程情报数据,避免误报。 重新学习服务器 登录管理控制台。 在页面左上角选择“区域”,单击,选择“安全与合规 > 企业主机安全”,进入主机安全平台界面。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    AiEngine端所部署的host ip地址。 port integer AiEngine端所侦听的端口号。 max_epoch integer 模型每次训练的迭代次数上限。 learning_rate real 模型训练的学习速率,推荐缺省值1。 dim_red real 模型特征维度降维系数。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    AiEngine端所部署的host ip地址。 port integer AiEngine端所侦听的端口号。 max_epoch integer 模型每次训练的迭代次数上限。 learning_rate real 模型训练的学习速率,推荐缺省值1。 dim_red real 模型特征维度降维系数。

    来自:帮助中心

    查看更多 →

  • AI防护者初始化

    AI防护者初始化 登录AI防护者管理页面,URL地址为“https://<管理节点IP>:8000” 启用主动学习机器学习设置>主动学习>选择网站>应用 图1 AI防护者初始化1 查看学习内容 图2 AI防护者初始化2 父主题: AI防护者初始化

    来自:帮助中心

    查看更多 →

  • 天筹求解器服务简介

    天筹求解器服务简介 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 服务介绍

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    AiEngine端所部署的host ip地址。 port integer AiEngine端所侦听的端口号。 max_epoch integer 模型每次训练的迭代次数上限。 learning_rate real 模型训练的学习速率,推荐缺省值1。 dim_red real 模型特征维度降维系数。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0

    来自:帮助中心

    查看更多 →

  • kv-cache-int8量化

    --kv-cache-dtype int8_pertoken #只支持int8,表示kvint8 per-token量化 per-tensor静态量化场景 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0

    来自:帮助中心

    查看更多 →

  • 态势感知的数据来源是什么?

    Security Service,HSS)、DDoS高防(Advanced Anti-DDoS,AAD)、 Web应用防火墙 (Web Application Firewall,WAF)等安全防护服务上报的告警数据,从中获取必要的安全事件记录,进行大数据挖掘和机器学习,智能AI分析并识

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    量化脚本的路径是examples/llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数。 使用tensorRT量化工具进行模型量化。 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化

    来自:帮助中心

    查看更多 →

  • 安全云脑的数据来源是什么?

    安全云脑基于云上威胁数据和华为云服务采集的威胁数据,通过大数据挖掘和机器学习,分析并呈现威胁态势,并提供防护建议。 一方面采集全网流量数据,以及安全防护设备日志等信息,通过大数据智能AI分析采集的信息,呈现资产的安全状况,并生成相应的威胁告警。 另一方面汇聚主机安全服务(Host Security

    来自:帮助中心

    查看更多 →

  • 方案概述

    elArts在线服务获取预测结果,并存储至OBS桶。 在统一身份认证服务 IAM上创建一个委托,用于授权FunctionGraph访问ModelArts在线服务和OBS桶。 方案优势 快速构建机器学习模型 AI开发平台 ModelArts可以快速创建和训练机器学习模型,无需任何编码。使模型开发和训练过程更加便捷和高效。

    来自:帮助中心

    查看更多 →

  • 方案概述

    elArts在线服务获取预测结果,并存储至OBS桶。 在统一身份认证服务 IAM上创建一个委托,用于授权FunctionGraph访问ModelArts在线服务和OBS桶。 方案优势 快速构建机器学习模型 AI开发平台ModelArts可以快速创建和训练机器学习模型,无需任何编码。使模型开发和训练过程更加便捷和高效。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT

    来自:帮助中心

    查看更多 →

  • 概述

    概述 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 产品介绍

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。 Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 在GPU机器上使用tensorRT

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了