AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习csv文件 更多内容
  • 新建数据集和导入数据

    TPC-iSPS11_60:KPI异常检测数据集 amazon:迁移学习Office-31 A(Amazon)数据集 dslr:迁移学习Office-31 D(DSLR)数据集 webcam:迁移学习Office-31 W(Webcam)数据集 caltech:迁移学习Caltech-256数据集 其中,ir

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 文件盒子删除文件

    "error_code" : "AIAE.00001500", "error_msg" : "Internal Server Error." } 状态码 状态码 描述 200 成功。 500 服务器内部错误或三方服务器内部错误。 错误码 请参见错误码。 父主题: 应用中心

    来自:帮助中心

    查看更多 →

  • ModelArts

    ModelArts不仅支持自动学习功能,还预置了多种已训练好的模型,同时集成了Jupyter Notebook,提供在线的代码开发环境。 业务开发者 使用自动学习构建模型 AI初学者 使用自定义算法构建模型 免费体验 ModelArts 免费体验CodeLab 自动学习 口罩检测(使用新版自动学习实现物体检测)

    来自:帮助中心

    查看更多 →

  • Open-Sora1.2基于DevServer适配PyTorch NPU训练推理指导(6.3.910)

    Step1 检查环境 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使

    来自:帮助中心

    查看更多 →

  • 时序数据标注介绍

    数据标注对于KPI异常检测非常重要,可以有效提升监督学习训练过程中KPI异常检测的准确率,在无监督学习中对模型做验证评估。 监督学习:使用标注工具对原始数据进行标注,并将标注数据用于训练。用户基于训练结果确认并更新数据标注,将标注数据重新用于训练,提升KPI检测准确率。 无监督学习:使用标注工具对原始数据进

    来自:帮助中心

    查看更多 →

  • 计费说明

    发或者优化服务,基于脱敏数据,训练深度学习机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天 600,000.00 每套 AI算法原型开发-专业版 对业务场景为复杂场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习机器学习模型,形成相

    来自:帮助中心

    查看更多 →

  • 文件管理文件下载

    文件管理文件下载 功能介绍 文件管理文件下载 调用方法 请参见如何调用API。 URI GET /v2/keystore/download 表1 Query参数 参数 是否必选 参数类型 描述 name 是 String 文件名 domain_id 是 String 租户ID id

    来自:帮助中心

    查看更多 →

  • 删除文件管理文件

    删除文件管理文件 功能介绍 删除文件管理文件 调用方法 请参见如何调用API。 URI DELETE /v2/keystore/{keystore_id}/delete 表1 路径参数 参数 是否必选 参数类型 描述 keystore_id 是 String 文件秘钥Id 请求参数

    来自:帮助中心

    查看更多 →

  • 文件盒子上传文件

    成功。 { "data" : "文件ID" } 状态码: 500 服务器内部错误或三方服务器内部错误。 { "error_code" : "AIAE.00001500", "error_msg" : "Internal Server Error." } 状态码 状态码 描述

    来自:帮助中心

    查看更多 →

  • 安全云脑的数据来源是什么?

    安全云脑基于云上威胁数据和华为云服务采集的威胁数据,通过大数据挖掘和机器学习,分析并呈现威胁态势,并提供防护建议。 一方面采集全网流量数据,以及安全防护设备日志等信息,通过大数据智能AI分析采集的信息,呈现资产的安全状况,并生成相应的威胁告警。 另一方面汇聚主机安全服务(Host Security

    来自:帮助中心

    查看更多 →

  • GDS实践指南

    400MB/s),才能保证单文件导入速率最大化。 提前做好服务部署规划,数据服务器上,建议一个Raid只布1~2个GDS。GDS跟DN的数据比例建议在1:3至1:6之间。一台加载机的GDS进程不宜部署太多,千兆网卡部署1个GDS进程即可,万兆网卡机器建议部署不大于4个进程。 提前

    来自:帮助中心

    查看更多 →

  • 服务内容说明

    Operator-Framework服务中的描述信息存放在*.clusterserviceversion.yaml中,其中必填项如下: apiVersion: operators.coreos.com/v1alpha1 kind: ClusterServiceVersion metadata:

    来自:帮助中心

    查看更多 →

  • 态势感知的数据来源是什么?

    Security Service,HSS)、DDoS高防(Advanced Anti-DDoS,AAD)、 Web应用防火墙 (Web Application Firewall,WAF)等安全防护服务上报的告警数据,从中获取必要的安全事件记录,进行大数据挖掘和机器学习,智能AI分析并识

    来自:帮助中心

    查看更多 →

  • 概述

    概述 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 产品介绍

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 使用DLI将CSV数据转换为Parquet数据

    数*小时数。 步骤1:创建并上传数据 创建 CS V数据,例如,如图2所示test.csv: 图2 创建test.csv文件 在OBS上建桶obs-csv-parquet,并将test.csv文件上传至OBS,如图3所示: 图3 上传CSV数据至OBS 在OBS上创建一个新的桶obs

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    AiEngine端所部署的host ip地址。 port integer AiEngine端所侦听的端口号。 max_epoch integer 模型每次训练的迭代次数上限。 learning_rate real 模型训练的学习速率,推荐缺省值1。 dim_red real 模型特征维度降维系数。

    来自:帮助中心

    查看更多 →

  • GS

    AiEngine端所部署的host ip地址。 port integer AiEngine端所侦听的端口号。 max_epoch integer 模型每次训练的迭代次数上限。 learning_rate real 模型训练的学习速率,推荐缺省值1。 dim_red real 模型特征维度降维系数。

    来自:帮助中心

    查看更多 →

  • 天筹求解器服务简介

    天筹求解器服务简介 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 服务介绍

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了