AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    从零开始深度学习 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 从零开始使用Storm

    从零开始使用Storm 用户可以在 MRS 集群的客户端中提交和删除Storm拓扑等基本功能。 前提条件 已安装MRS集群客户端,例如安装目录为“/opt/hadoopclient”。以下操作的客户端目录只是举例,请根据实际安装目录修改。 操作步骤 根据业务情况,准备好客户端,登录安装客户端的节点。

    来自:帮助中心

    查看更多 →

  • 从零开始使用Sqoop

    从零开始使用Sqoop Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(MySQL、PostgreSQL等)间进行数据的传递,可以将一个关系型数据库(例如:MySQL、Oracle、PostgreSQL等)中的数据导进到Hadoop的HDFS中,也可

    来自:帮助中心

    查看更多 →

  • 从零开始使用Spark

    从零开始使用Spark 本章节提供从零开始使用Spark提交sparkPi作业的操作指导,sparkPi是最经典的Spark作业,它用来计算Pi(π)值。 操作步骤 准备sparkPi程序。 开源的Spark的样例程序包含多个例子,其中包含sparkPi。可以从https://archive

    来自:帮助中心

    查看更多 →

  • 从零开始使用CarbonData

    从零开始使用CarbonData MRS 3.x之前版本参考本章节,MRS 3.x及后续版本请参考使用CarbonData(MRS 3.x及之后版本)。 本章节介绍使用Spark CarbonData的基本流程,所有任务场景基于spark-beeline环境。CarbonData快速入门包含以下任务:

    来自:帮助中心

    查看更多 →

  • 从零开始使用Kudu

    从零开始使用Kudu Kudu是专为Apache Hadoop平台开发的列式存储管理器。Kudu具有Hadoop生态系统应用程序的共同技术特性:可水平扩展,并支持高可用性操作。 前提条件 已安装集群客户端,例如安装目录为“/opt/hadoopclient”,以下操作的客户端目录只是举例,请根据实际安装目录修改。

    来自:帮助中心

    查看更多 →

  • 从零开始使用Kudu

    从零开始使用Kudu Kudu是专为Apache Hadoop平台开发的列式存储管理器。Kudu具有Hadoop生态系统应用程序的共同技术特性:可水平扩展,并支持高可用性操作。 前提条件 已安装集群客户端,例如安装目录为“/opt/hadoopclient”,以下操作的客户端目录只是举例,请根据实际安装目录修改。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 从零开始使用Iceberg

    从零开始使用Iceberg 本章节主要介绍如何在spark-sql中操作Iceberg表,推荐使用Hive Catalog方式登录spark-sql。 Iceberg当前为公测阶段,若需使用需联系技术支持申请白名单开通。 前提条件 已安装Spark服务,且服务运行状态正常。 已安

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 如何从零开始开发Operator

    如何从零开始开发Operator 开发Operator 制作镜像 制作服务包 父主题: 附录

    来自:帮助中心

    查看更多 →

  • 从零开始使用Spark SQL

    从零开始使用Spark SQL Spark提供类似SQL的Spark SQL语言操作结构化数据,本章节提供从零开始使用Spark SQL,创建一个名称为src_data的表,然后在src_data表中每行写入一条数据,最后将数据存储在“mrs_20160907”集群中。再使用SQ

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了