tensorflow预训练模型 更多内容
  • 执行预训练任务

    etrain_7b.sh 等待模型载入 执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 最后,请参考查看日志和性能章节查看训练的日志和性能。 父主题: 主流开源大模型基于DevServer适配ModelLink

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    。 示例 图片分类预测我们采用Mnist数据集作为流的输入,通过加载训练的deeplearning4j模型或者keras模型,可以实时预测每张图片代表的数字。 1 2 3 4 5 6 CREATE SOURCE STREAM Mnist( image Array[TINYINT]

    来自:帮助中心

    查看更多 →

  • 订购模型训练服务

    输入租户名和密码,单击“登录”,进入NAIE服务官网。 首次登录后请及时修改密码,并定期修改密码。 依次选择“AI服务 > AI服务 > 模型训练服务 > 模型训练服务”,进入模型训练服务介绍页面。 单击“我要购买”,进入服务订购界面。 区域:为用户提供服务的华为云Region。请选择“华北-北京四”。

    来自:帮助中心

    查看更多 →

  • 订购模型训练服务

    输入租户名和密码,单击“登录”,进入NAIE服务官网。 首次登录后请及时修改密码,并定期修改密码。 依次选择“AI服务 > AI服务 > 模型训练服务 > 模型训练服务”,进入模型训练服务介绍页面。 单击“我要购买”,进入服务订购界面。 区域:为用户提供服务的华为云Region。请选择“华北-北京四”。

    来自:帮助中心

    查看更多 →

  • 模型训练服务首页

    模型训练服务首页 如何回到模型训练服务首页? 创建项目公开至组的参数是什么含义? 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 模型文件说明(训练)

    模型文件说明(训练) Octopus模型管理模块,支持用户上传模型,并将其用于模型评测、模型编译任务。如果需要将模型用于内置评测模板评测,除模型文件外,需另外包含推理启动文件: customer_inference.py 仅当需要使用内置评测指标计算时需要添加推理启动文件,文件名称可自定义,将该文件置于模型目录下。

    来自:帮助中心

    查看更多 →

  • 模型训练使用流程

    模型训练必备要素包括训练代码、训练框架、训练数据。 训练代码包含训练作业的启动文件或启动命令、训练依赖包等内容。 当使用预置框架创建训练作业时,训练代码的开发规范可以参考开发用于预置框架训练的代码。 当使用 自定义镜像 创建训练作业时,训练代码的开发规范可以参考开发用于自定义镜像训练的代码。

    来自:帮助中心

    查看更多 →

  • 制作自定义镜像用于训练模型

    制作自定义镜像用于训练模型 训练作业的自定义镜像制作流程 使用预置镜像制作自定义镜像用于训练模型 已有镜像迁移至ModelArts用于训练模型 从0制作自定义镜像用于创建训练作业(Pytorch+Ascend) 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU)

    来自:帮助中心

    查看更多 →

  • 创建算法

    算法代码存储的OBS路径。训练代码、依赖安装包或者生成模型训练所需文件上传至该代码目录下。 请注意不要将训练数据放在代码目录路径下。训练数据比较大,训练代码目录在训练作业启动后会下载至后台,可能会有下载失败的风险。 训练作业启动时,ModelArts会将训练代码目录及其子目录下载至训练后台容器中。

    来自:帮助中心

    查看更多 →

  • AIGC模型训练推理

    LLaVA模型基于DevServer适配PyTorch NPU训练指导(6.3.906) LLaVA模型基于DevServer适配PyTorch NPU推理指导(6.3.906) SDXL基于Standard适配PyTorch NPU的Finetune训练指导(6.3.905) SDXL基于DevServer适配PyTorch

    来自:帮助中心

    查看更多 →

  • 文生视频模型训练推理

    文生视频模型训练推理 CogVideoX模型基于DevServer适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于DevServer适配PyTorch NPU训练推理指导(6.3.910) Open-Sora-Plan1.0基于DevServer适配PyTorch

    来自:帮助中心

    查看更多 →

  • 数字人模型训练推理

    数字人模型训练推理 Wav2Lip推理基于DevServer适配PyTorch NPU推理指导(6.3.907) Wav2Lip训练基于DevServer适配PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 昇腾能力应用地图

    qwen2-72b 训练、SFT全参微调、LoRA微调 ModelLink LlamaFactory Yi yi-6b yi-34b 训练、SFT全参微调、LoRA微调 ModelLink LlamaFactory ChatGLMv3 glm3-6b 训练、SFT全参微调、LoRA微调

    来自:帮助中心

    查看更多 →

  • 概要

    IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 创建模型不同方式的场景介绍

    创建模型的几种场景 从训练作业中导入模型文件创建模型:在ModelArts中创建训练作业,并完成模型训练,在得到满意的模型后,可以将训练后得到的模型创建为模型,用于部署服务。 从OBS中导入模型文件创建模型:如果您使用常用框架在本地完成模型开发和训练,可以将本地的模型按照模型包规范上传至O

    来自:帮助中心

    查看更多 →

  • LLaVA模型基于DevServer适配PyTorch NPU预训练指导(6.3.906)

    LLaVA模型基于DevServer适配PyTorch NPU训练指导(6.3.906) LLaVA是一种新颖的端到端训练的大型多模态模型,它结合了视觉编码器和Vicuna,用于通用的视觉和 语言理解 ,实现了令人印象深刻的聊天能力,在科学问答(Science QA)上达到了新的高度。

    来自:帮助中心

    查看更多 →

  • 如何在模型训练时,设置日志级别?

    如何在模型训练时,设置日志级别? 在TensorFlow的log日志等级如下: - 0:显示所有日志(默认等级) - 1:显示info、warning和error日志 - 2:显示warning和error信息 - 3:显示error日志信息 以设置日志级别为“3”为例,操作方法如下:

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如TensorflowSpark MLlibMXNetPyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 创建模型训练工程

    创建模型训练工程 创建工程 编辑训练代码(简易编辑器) 编辑训练代码(WebIDE) 模型训练 MindSpore样例 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • eagle投机小模型训练

    utf-8 其中: input_file_path:训练json文件地址。 out_file_name:输出的sharegpt格式文件地址。 prefix_name:训练json文件的前缀 字段名称 (可设置为None,此时训练数据集只有 input output 两段)输入前缀,(例如:您是一个xxx专家

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了