中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    数据科学家和机器学习 更多内容
  • DLI作业开发流程

    Flink支持动态数据类型,可以在运行时定义数据结构,不需要事先定义元数据。 定义您的数据结构,包括数据目录、数据库、表。请参考创建数据库和表。 创建必要的存储桶来存储作业运行过程中产生的临时数据:作业日志、作业结果等。请参考配置 DLI 作业桶。 配置元数据的访问权限。请参考在DLI控制台配置数据库权限、在DLI控制台配置表权限。

    来自:帮助中心

    查看更多 →

  • 概述

    概述 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 OptVerse以开放API(Application

    来自:帮助中心

    查看更多 →

  • 应用场景

    全链路性能追踪:Web服务、缓存、数据库全栈跟踪,性能瓶颈轻松掌握。 故障智能诊断 业务痛点 海量业务下,出现百种指标监控、KPI数据、调用跟踪数据等丰富但无关联的应用运维数据,如何通过应用、服务、实例、主机和事务等多视角分析关联指标和告警数据,自动完成故障根因分析;如何基于历史数据学习与运维经验库,对异常事务智能分析给出可能原因。

    来自:帮助中心

    查看更多 →

  • 自动学习的每个项目对数据有哪些要求?

    自动学习的每个项目对数据有哪些要求? 图像分类对数据集的要求 文件名规范:不能有+、空格、制表符。 保证图片质量:不能有损坏的图片,目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。 每一类数据尽量多,尽量均衡。期望获得良好效果

    来自:帮助中心

    查看更多 →

  • 天筹求解器服务简介

    天筹求解器服务简介 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 服务介绍

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 钉钉机器人、钉钉企业内部机器人、飞书机器人、企业微信机器人如何获取订阅终端?

    钉钉机器人、钉钉企业内部机器人、飞书机器人、企业微信机器人如何获取订阅终端? 钉钉机器人、钉钉企业内部机器人、飞书机器人和企业微信机器人在添加订阅时,输入的订阅终端地址获取方式如下。 钉钉机器人 在钉钉的群设置中选择“智能群助手”,添加机器人时选择“自定义”,创建完成后即可获得w

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    枚举训练模型的输入列名。 取值范围:字符型,需要符合数据属性名的命名规范。 attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name

    来自:帮助中心

    查看更多 →

  • 什么是Workflow

    ,会根据数据和模型结果进行多轮的实验迭代。算法工程师会根据数据特征以及数据的标签做多样化的数据处理以及多种模型优化,以获得在已有的数据集上更好的模型效果。传统的模型交付会直接在实验迭代结束后以输出的模型为终点。当应用上线后,随着时间的推移,会出现模型漂移的问题。新的数据和新的特征

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • Storm应用开发简介

    Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩展、支持容错,可确保数据得到处理,易于构建和操控。

    来自:帮助中心

    查看更多 →

  • 管理科学计算大模型训练任务

    管理科学计算大模型训练任务 在训练任务列表中,任务创建者可以对创建好的任务进行编辑、启动、克隆(复制训练任务)、重试(重新训练任务)和删除操作。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,进入模型训练页面,可进行如下操作:

    来自:帮助中心

    查看更多 →

  • 和机器人说你好

    关联。 单击流程后的“呼叫测试”,输入“你好”,机器人回答“你好”。 您的“对话类型”选择“聊天机器人”,需要进行渠道配置。 选择“配置中心 > 接入配置>渠道配置”。 单击“新增”,在机器人配置中,开启机器人,可选择已发布的机器人。 当您的“对话类型”选择“语音导航”或“IVR流程”时,需要配置被叫路由。

    来自:帮助中心

    查看更多 →

  • Storm应用开发简介

    Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩展、支持容错,可确保数据得到处理,易于构建和操控。

    来自:帮助中心

    查看更多 →

  • 方案概述

    Turbo的Checkpoint数据异步导出到OBS,均不占用训练任务时长。 SFS Turbo和OBS存储服务之间数据直接导入导出,无需部署外部数据拷贝机器及工具。 4 冷热数据自动流动,降低存储成本 SFS Turbo支持自定义数据淘汰策略,冷数据自动分级到OBS,释放高性能存储空间用于接收新的热数据。

    来自:帮助中心

    查看更多 →

  • 智能场景简介

    供智能推荐服务。 智能场景功能说明 表1 功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法,深度挖掘物品之间的联系,自动匹配精准内容。 热门推荐 基于多维度数据分析,自动匹

    来自:帮助中心

    查看更多 →

  • SA与HSS服务的区别?

    决混合云、多云数据中心基础架构中服务器工作负载的独特保护要求。 简而言之,SA是呈现全局安全态势的服务,HSS是提升主机和容器安全性的服务服务功能区别 SA通过采集全网安全数据(包括HSS、WAF、AntiDDoS等安全服务检测数据),使用大数据AI、机器学习等分析技术,从资

    来自:帮助中心

    查看更多 →

  • 附录

    和维护。 volcano插件:Volcano是一个基于Kubernetes的批处理平台,提供了机器学习、深度学习、生物信息学、基因组学及其他大数据应用所需要而Kubernetes当前缺失的一系列特性。 Flink Operator:通过Flink operator ,把Flink

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    处理和对话机器服务 ModelArts平台开发实验 介绍自动学习数据管理、深度学习预置算法、深度学习自定义基础算法和进阶算法 本培训为线下面授形式,培训标准时长为9天,每班人数不超过20人。 验收标准 按照培训服务申请标准进行验收,客户以官网单击确认《培训专业服务签到表》作为验收合格依据。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。 核函数特征交互神经网络是深度网络因子分解机的改

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据学习,从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了