对象存储服务 OBS     

对象存储服务(Object Storage Service)是一款稳定、安全、高效、易用的云存储服务,具备标准Restful API接口,可存储任意数量和形式的非结构化数据。

 
 

    深度学习半精度模型存储 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢

    来自:帮助中心

    查看更多 →

  • 模型精度调优

    模型精度调优 场景介绍 精度问题诊断 精度问题处理 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。 中量级:训练时长约为轻量级的3-5倍;

    来自:帮助中心

    查看更多 →

  • 存储模型

    存储模型 资源快照存储模型 资源变更消息存储模型 父主题: 附录

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 方案概述

    提供的各类高阶组件进行模型迁移分析、模型算子精度采集与模型性能采集,支持客户调用工具实现精度、性能数据的可视化,处理客户在工具链使用过程中遇到的技术问题。 昇腾迁移&优化服务: 昇腾适配模型运行支持:基于昇腾已在ModelZoo上发布的模型,支持客户完成模型在昇腾平台上的部署与调

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • 选择存储模型

    选择存储模型 进行数据库设计时,表设计上的一些关键项将严重影响后续整库的查询性能。表设计对数据存储也有影响:好的表设计能够减少I/O操作及最小化内存使用,进而提升查询性能。 表的存储模型选择是表定义的第一步。客户业务属性是表的存储模型的决定性因素,依据下面表格选择适合当前业务的存储模型。

    来自:帮助中心

    查看更多 →

  • 选择存储模型

    选择存储模型 进行数据库设计时,表设计上的一些关键项将严重影响后续整库的查询性能。表设计对数据存储也有影响:好的表设计能够减少I/O操作及最小化内存使用,进而提升查询性能。 表的存储模型选择是表定义的第一步。客户业务属性是表的存储模型的决定性因素,依据下面表格选择适合当前业务的存储模型。

    来自:帮助中心

    查看更多 →

  • 选择存储模型

    选择存储模型 进行数据库设计时,表设计上的一些关键项将严重影响后续整库的查询性能。表设计对数据存储也有影响:好的表设计能够减少I/O操作及最小化内存使用,进而提升查询性能。 表的存储模型选择是表定义的第一步。客户业务属性是表的存储模型的决定性因素,依据下面表格选择适合当前业务的存储模型。

    来自:帮助中心

    查看更多 →

  • 选择存储模型

    选择存储模型 进行数据库设计时,表设计上的一些关键项将严重影响后续整库的查询性能。表设计对数据存储也有影响:好的表设计能够减少I/O操作及最小化内存使用,进而提升查询性能。 表的存储模型选择是表定义的第一步。客户业务属性是表的存储模型的决定性因素,依据下面表格选择适合当前业务的存储模型。

    来自:帮助中心

    查看更多 →

  • 执行作业

    ,包括作业输入条件、输出结果、执行环境、合作方信息和模型贡献度等。 图2 展示作业报告 执行纵向作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的纵向作业,单击“执行”。 图3 执行作业

    来自:帮助中心

    查看更多 →

  • 功能介绍

    遥感解译专用模型,支持用户进行预训练和解译应用。 图18 部分深度学习模型参数 一键式模型部署和API发布,提供深度学习模型的快速部署功能,支持GPU资源分配、弹性扩容、模型迭代发布、应用监控和统计分析,轻松实现AI能力服务化。 图19 模型部署发布平台 平台基于模型训练结果,面

    来自:帮助中心

    查看更多 →

  • 精度函数

    精度函数 HLL(HyperLogLog)主要存在三种模式Explicit,Sparse,Full。当数据规模比较小的时候会使用Explicit模式和Sparse模式, 这两种模式在计算结果上基本上没有误差。 随着distinct值越来越多,就会转换成Full模式,但结果也会存在

    来自:帮助中心

    查看更多 →

  • 精度函数

    精度函数 HLL(HyperLogLog)主要存在三种模式Explicit,Sparse,Full。当数据规模比较小的时候会使用Explicit模式和Sparse模式, 这两种模式在计算结果上基本上没有误差。 随着distinct值越来越多,就会转换成Full模式,但结果也会存在

    来自:帮助中心

    查看更多 →

  • 精度校验

    精度校验 转换模型后执行推理前,可以使用benchmark工具对MindSpore Lite云侧推理模型进行基准测试。它不仅可以对MindSpore Lite云侧推理模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 精度测试 benc

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了