如何解决深度学习过拟合 更多内容
  • 欠拟合的解决方法有哪些?

    加数据,训练效果并不明显。 降低正则化约束。 正则化约束是为了防止模型拟合,如果模型压根不存在过拟合而是欠拟合了,那么就考虑是否降低正则化参数λ或者直接去除正则化项。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 基本概念

    保持或接近模型的最佳性能。 拟合 拟合是指为了得到一致假设而使假设变得过度严格,会导致模型产生“以偏概全”的现象,导致模型泛化效果变差。 欠拟合拟合是指模型拟合程度不高,数据距离拟合曲线较远,或指模型没有很好地捕捉到数据特征,不能够很好地拟合数据。 损失函数 损失函数(Loss

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 排序策略

    制防止拟合。默认0。 L2正则项系数 叠加在模型的2范数之上,用来对模型值进行限制防止拟合。默认0。 正则损失计算方式 正则损失计算当前有两种方式。 full:指针对全量参数计算。 batch:则仅针对当前批数据中出现的参数计算 说明: batch模式计算速度快于full模式。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    制防止拟合。默认0。 L2正则项系数 叠加在模型的2范数之上,用来对模型值进行限制防止拟合。默认0。 正则损失计算方式 正则损失计算当前有两种方式。 full:指针对全量参数计算。 batch:则仅针对当前批数据中出现的参数计算 说明: batch模式计算速度快于full模式。

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使模型效果最优

    以使用较大的学习率和较大的批量大小,以提高训练效率。如果微调数据量相对较少,则可以使用较小的学习率和较小的数据批量大小,避免拟合。 通用模型的规格:如果模型参数规模较小,那么可能需要较大的学习率和较大的批量大小,以提高训练效率。如果规模较大,那么可能需要较小的学习率和较小的批量大小,防止内存溢出。

    来自:帮助中心

    查看更多 →

  • 数据量和质量均满足要求,为什么微调后的效果不好

    认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 父主题: 典型训练问题和优化策略

    来自:帮助中心

    查看更多 →

  • 数据量很少,可以微调吗

    不建议您直接使用该数据进行微调,否则可能会存在如下问题: 拟合:当微调数据量很小时,为了能充分学习这些数据的知识,可能会训练较多的轮次,因而模型会过分记住这些数据,导致无法泛化到其他数据上,最终发生过拟合现象。 欠拟合:当微调数据量很小时,模型无法有效地调整模型的参数,同时也很

    来自:帮助中心

    查看更多 →

  • 为什么微调后的模型,只能回答在训练样本中学过的问题

    ,一旦输入了一个从未出现的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了拟合。请检查训练参数中的 “

    来自:帮助中心

    查看更多 →

  • 为什么微调后的模型,回答中会出现乱码

    过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域都会学习一个隐向量,能够达到更高的精度,但也更容易出现拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 为什么微调后的模型,回答总是在重复某一句或某几句话

    过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低拟合的风险。 父主题: 典型训练问题和优化策略

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    learning_rate 学习学习率是每一次迭代中梯度向损失函数最优解移动的步长。 weight_decay 权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 创建自监督微调训练任务

    decay)的机制,可以有效地防止拟合(overfitting)的问题。 学习率衰减比率 0.00001 0~1 学习率衰减后,最小不会低于的学习率,计算公式为:学习率*学习率衰减比率。 热身比例 0.1 0~1 热身阶段占整体训练的比例。 模型刚开始训练时,如果选择一个较大的学习率,可能导致模型

    来自:帮助中心

    查看更多 →

  • 创建有监督训练任务

    decay)的机制,可以有效地防止拟合(overfitting)的问题。 学习率衰减比率 0.00001 0~1 学习率衰减后,最小不会低于的学习率。计算公式为:学习率*学习率衰减比率。 热身比例 0.1 0~1 热身阶段占整体训练的比例。 模型刚开始训练时,如果选择一个较大的学习率,可能导致模型

    来自:帮助中心

    查看更多 →

  • 如何评估微调后的模型是否正常

    如何评估微调后的模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    深度诊断E CS 操作场景 ECS支持操作系统的深度诊断服务,提供GuestOS内常见问题的自诊断能力,您可以通过方便快捷的自诊断服务解决操作系统内的常见问题。 本文介绍支持深度诊断的操作系统版本以及诊断结论说明。 约束与限制 该功能依赖云运维中心(Cloud Operations

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 成长地图

    CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了