中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    大数据聚类算法 更多内容
  • 聚类系数算法(Cluster Coefficient)

    聚类系数算法(Cluster Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。

    来自:帮助中心

    查看更多 →

  • 实时聚类

    实时聚类 聚类算法是非监督算法中非常典型的一类算法,经典的K-Means算法通过提前确定类别数目,计算数据点之间的距离来分类。对于离线静态数据集,我们可以依赖领域中知识来确定类别数目,运行K-Means算法可以取得比较好的聚类效果。但是对于在线实时流数据数据是在不断变化和演进,

    来自:帮助中心

    查看更多 →

  • 聚类系数算法(cluster_coefficient)

    聚类系数算法(cluster_coefficient) 功能介绍 根据输入参数,执行cluster_coefficient算法聚类系数算法(cluster_coefficient)用于计算图中节点的聚集程度。 URI POST /ges/v1.0/{project_id}/h

    来自:帮助中心

    查看更多 →

  • 实时聚类

    实时聚类 聚类算法是非监督算法中非常典型的一类算法,经典的K-Means算法通过提前确定类别数目,计算数据点之间的距离来分类。对于离线静态数据集,我们可以依赖领域中知识来确定类别数目,运行K-Means算法可以取得比较好的聚类效果。但是对于在线实时流数据数据是在不断变化和演进,

    来自:帮助中心

    查看更多 →

  • 聚类分析

    聚类分析 聚类分析工具可以通过骨架聚类方法,将大型小分子数据库中结构相似的化合物聚成一类,从而找到有效骨架 ,辅助苗头化合物发现。 单击“功能模块 > 通用工具 > 聚类分析”功能卡片,进入配置页面。 图1 聚类分析配置页面 输入方式:选择文件和手动输入类型。 上传分子文件:选择

    来自:帮助中心

    查看更多 →

  • 创建分子聚类作业

    参数类型 描述 method 是 String 聚类方法,当前仅支持hiq_mc。 最小长度:1 最大长度:20 file 是 String 分子聚类数据。 最小长度:1 最大长度:2000 output_dir 是 String 分子聚类输出结果。 最小长度:1 最大长度:1200

    来自:帮助中心

    查看更多 →

  • 创建聚类分析作业

    描述 source 是 String 受体的数据源:用户私有数据中心、承载租户公共数据(含样例/公共库)。 枚举值: PRIVATE PUBLIC RAW url 否 String 文件URL,当数据源为用户私有数据中心为项目路径,为公共数据场景时为obs地址。 最小长度:1 最大长度:2000

    来自:帮助中心

    查看更多 →

  • 什么是ATGen

    DG),探索遍历ODG自主生成API测试序列,实时构造并下发API测试请求,判定API测试响应结果,动态修正ODG图,优化下一轮生成。 六关键特性: 支持基于Rest API接口定义Yaml文档零码全自动智能测试生成。 感知Rest API 接口调用上下文:解析接口定义Yaml

    来自:帮助中心

    查看更多 →

  • 处理问题聚类任务

    处理问题聚类任务 操作步骤 选择“配置中心>机器人管理>语义理解服务”,进入语义理解服务页面。 选择“检查训练 > 问题聚类任务”。单击“启动聚类任务”,填写需要进行聚类分析的会话生成时间段,单击“启动”。 请确保所选的时间段内存在可用于分析的会话记录。 导入用户列表后,聚类任务仅分析该号码对应的会话记录。

    来自:帮助中心

    查看更多 →

  • 聚类系数(cluster

    聚类系数(cluster_coefficient)(1.0.0) 表1 response_data参数说明 参数 类型 说明 cluster_coefficient Double 聚类系数。 statistics Boolean 是否仅返回全图平局聚类系数,默认为true。 父主题:

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    的购买趋势预测等。 聚类 聚类是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。 与分类不同,聚类分析数据对象,而不考虑已知的

    来自:帮助中心

    查看更多 →

  • 使用自动分组智能标注作业

    使用自动分组智能标注作业 为了提升智能标注算法精度,可以均衡标注多个类别,有助于提升智能标注算法精度。ModelArts内置了分组算法,您可以针对您选中的数据,执行自动分组,提升您的数据标注效率。 自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类结果进行处理,可以分组打标或者清洗图片。

    来自:帮助中心

    查看更多 →

  • 查询聚类分析作业详情

    String 受体的数据源:外部网络数据(如R CS B在线数据库)、用户私有数据中心、承载租户公共数据(含样例/公共库)。 枚举值: EXTRANET PRIVATE PUBLIC RAW url String 文件URL,当数据源为外部网络数据时为https地址;用户私有数据中心为项目路径、公共数据场景为obs地址。

    来自:帮助中心

    查看更多 →

  • 聚类分析作业管理

    聚类分析作业管理 创建聚类分析作业 查询聚类分析作业详情 父主题: API(盘古辅助制药平台)

    来自:帮助中心

    查看更多 →

  • 算法

    KcoreSample K核算法 KhopSample K跳算法 ShortestPathSample 最短路径算法 AllShortestPathsSample 全最短路径算法 FilteredShortestPathSample 带一般过滤条件最短路径 SsspSample 单源最短路径算法 Sh

    来自:帮助中心

    查看更多 →

  • 模型训练新建模型训练工程的时候,选择通用算法有什么作用?

    模型训练新建模型训练工程的时候,选择通用算法有什么作用? 通用算法目前包括:分类算法、拟合算法聚类算法、其他类型。用户选择不同的通用算法类型,并勾选“创建入门模型训练代码”,便可以自动生成对应类型的代码模版。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 分子属性预测

    分子属性预测 基于盘古药物分子模型,预测化合物ADMET相关的80多种成药属性,有些属性的预测值会给出置信区间,更好地辅助分子设计。 单击“分子属性预测”功能卡片,进入配置页面。 图1 小分子配置页面 在配置页面输入分子信息,及配置相关参数。 输入方式:支持绘制分子、选择文件、手动输入。

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • 分子对接

    分子对接 分子对接基于华为云算力,可根据靶点蛋白和小分子药物的3D结构,计算对接结合能,实现百万级别虚拟筛选。 单击“分子对接”功能卡片,进入分子对接受体预处理页面,单击上传受体文件,进行受体蛋白预处理配置。 受体文件仅支持PDB格式,若文件中存在多个受体,默认只处理第一个。受

    来自:帮助中心

    查看更多 →

  • 靶点口袋分子设计

    靶点口袋分子设计 基于盘古药物分子模型,靶点口袋分子设计功能主要是能够根据给定的口袋和小分子利用AI的预测出更优小分子。 单击“靶点口袋分子设计”功能卡片,进入配置页面。 在配置页面上选择设计方式 设计方式:支持侧链修饰、骨架跃迁、片段生长和从头生成四种方式。 侧链修饰:会在不

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了