vue.js axios框架 更多内容
  • 华为云区块链服务使用的底层框架是什么?

    华为云 区块链 服务使用的底层框架是什么? 华为云区块链服务使用HyperLedger开源框架。 HyperLedger,是由Linux基金会主导推广的区块链开源项目。目标是建立面向多种应用场景的分布式账簿平台的底层构架。Hyperledger在Hyperledger Fabric的

    来自:帮助中心

    查看更多 →

  • 第三方推理框架迁移到ModelArts Standard推理自定义引擎

    适配和改造的主要工作项如下: 图1 改造工作项 针对不同框架的镜像,可能还需要做额外的适配工作,具体差异请见对应框架的操作步骤。 TFServing框架迁移操作步骤 Triton框架迁移操作步骤 TFServing框架迁移操作步骤 增加用户ma-user。 基于原生"tensorflow/serving:2

    来自:帮助中心

    查看更多 →

  • SD1.5&SDXL Koyha框架基于DevServer适配PyTorch NPU训练指导(6.3.908)

    SD1.5&SDXL Koyha框架基于DevServer适配PyTorch NPU训练指导(6.3.908) 训练场景和方案介绍 准备镜像环境 Finetune训练 LoRA训练 父主题: AIGC模型训练推理

    来自:帮助中心

    查看更多 →

  • SD3 Diffusers框架基于DevServer适配PyTorch NPU推理指导(6.3.907)

    SD3 Diffusers框架基于DevServer适配PyTorch NPU推理指导(6.3.907) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite

    来自:帮助中心

    查看更多 →

  • 添加工具类

    置了一部分npm包的cdn链接,因此使用以下npm包时,无需添加cdn链接。 @vueuse/core @vueuse/shared axios pinia vue vue-i18n vue-router vue/server/renderer @opentiny/vue 父主题:

    来自:帮助中心

    查看更多 →

  • 代码使用示例-用户接入

    === "" || data ['content'].length < 1) { return; } axios({ url: '/apiaccess/ccmessaging/send', method: 'POST'

    来自:帮助中心

    查看更多 →

  • SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch NPU训练指导(6.3.908)

    SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch NPU训练指导(6.3.908) 训练场景和方案介绍 准备镜像环境 Finetune训练 LoRA训练 Controlnet训练 父主题: AIGC模型训练推理

    来自:帮助中心

    查看更多 →

  • 开发规范

    使用Java语言进行微服务开发。 ServiceComb引擎微服务开发框架版本要求 微服务开发框架推荐版本如下表所示。 如果已经使用低版本的微服务开发框架构建应用,建议升级到推荐版本,以获取最稳定和丰富的功能体验。 如果已使用Spring Cloud微服务开发框架开发了应用,推荐使用Spring Cloud

    来自:帮助中心

    查看更多 →

  • 开发规范

    使用Java语言进行微服务开发。 微服务开发框架版本要求 微服务开发框架推荐版本如下表所示。 如果已经使用低版本的微服务开发框架构建应用,建议升级到推荐版本,以获取最稳定和丰富的功能体验。 如果已使用Spring Cloud微服务开发框架开发了应用,推荐使用Spring Cloud

    来自:帮助中心

    查看更多 →

  • 模型训练使用流程

    训练作业的创建方式介绍 创建方式 适用场景 使用预置框架创建训练作业 如果您已在本地使用一些常用框架完成算法开发,您可以选择常用框架,创建训练作业来构建模型 使用 自定义镜像 创建训练作业 如果您开发算法时使用的框架并不是常用框架,您可以将算法构建为一个自定义镜像,通过自定义镜像创建训练作业。

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发简介

    切分为若干独立的数据块,由map任务(task)以完全并行的方式来处理。框架会对map的输出先进行排序,然后把结果输入给reduce任务,最后返回给客户端。通常作业的输入和输出都会被存储在文件系统中。整个框架负责任务的调度和监控,以及重新执行已经失败的任务。 MapReduce主要特点如下:

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发简介

    切分为若干独立的数据块,由map任务(task)以完全并行的方式来处理。框架会对map的输出先进行排序,然后把结果输入给reduce任务,最后返回给客户端。通常作业的输入和输出都会被存储在文件系统中。整个框架负责任务的调度和监控,以及重新执行已经失败的任务。 MapReduce主要特点如下:

    来自:帮助中心

    查看更多 →

  • 功能介绍

    模型验证是基于新的数据集或超参,对模型训练服务已打包的模型进行验证,根据验证报告判断当前模型的优劣。 云端推理框架 提供模型云端运行框架环境,用户可以在线验证模型推理效果,无须从零准备计算资源、搭建推理框架,只需将模型包加载到云端推理框架,一键发布成云端Web Service推理服务,帮助用户高效低成本完成模型验证。

    来自:帮助中心

    查看更多 →

  • 什么是DevStar

    华为云DevStar为开发者提供业界主流框架代码初始化能力,通过GUI、API、CLI等多种方式,将按模板生成框架代码的能力推送至用户桌面。同时基于华为云服务资源、成熟的DevOps开发工具链和面向多场景的众多开发模板,提供一站式创建代码仓、自动生成框架代码、创建编译构建、测试、部署等流水线任务能力,使应用开发无需从零开始。

    来自:帮助中心

    查看更多 →

  • 开发简介

    Cloud和Java Chassis微服务开发框架接入微服务引擎,能够获得好的开发体验和技术支持。使用其他开发框架,比如使用Mesher接入微服务引擎依赖于开源社区技术支持。 本文重点描述Spring Cloud和Java Chassis的开发指导,其他框架如Mesher开发的微服务应用使用

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发简介

    切分为若干独立的数据块,由map任务(task)以完全并行的方式来处理。框架会对map的输出先进行排序,然后把结果输入给reduce任务,最后返回给客户端。通常作业的输入和输出都会被存储在文件系统中。整个框架负责任务的调度和监控,以及重新执行已经失败的任务。 MapReduce主要特点如下:

    来自:帮助中心

    查看更多 →

  • 使用AstroZero设置应用的兼容性

    在菜单栏中,选择“高级设置”。 在“兼容性设置”页签中,开启“页面组件的渲染框架由Vue2升级为Vue3”开关。 图1 高级设置 当前版本的高级页面中,提供了Vue2和Vue3两种框架的组件,如果需要使用Vue2框架的组件,需要关闭“页面组件的渲染框架由Vue2升级为Vue3”,否则会提示图2中信息。 图2

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发常用概念

    MapReduce输入输出(InputFormat,OutputFormat) MapReduce框架根据用户指定的InputFormat切割数据集,读取数据,并提供给map任务多条键值对进行处理,决定并行启动的map任务数目。MapReduce框架根据用户指定的OutputFormat,把生成的键值对输出为特定格式的数据。

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发简介

    切分为若干独立的数据块,由map任务(task)以完全并行的方式来处理。框架会对map的输出先进行排序,然后把结果输入给reduce任务,最后返回给客户端。通常作业的输入和输出都会被存储在文件系统中。整个框架负责任务的调度和监控,以及重新执行已经失败的任务。 MapReduce主要特点如下:

    来自:帮助中心

    查看更多 →

  • 应用开发问题咨询指引

    服务,如果遇到框架使用问题而非插件问题,请到对应开源社区提问。 关键信息 为了方便问题的快速定位,提issue时务必提供详细的关键信息,提供可以复现问题的Demo。 以servicecomb-java-chassis为例,请提供如下关键信息: 框架相关日志:默认框架日志会与业务日志一起打印,并且会在根目录下生成cse

    来自:帮助中心

    查看更多 →

  • YARN应用开发简介

    、磁盘等。其产生的原因是为了解决原MapReduce框架的不足。最初MapReduce的committer还可以周期性的在已有的代码上进行修改,可是随着代码的增加以及原MapReduce框架设计的不足,在原MapReduce框架上进行修改变得越来越困难,所以MapReduce的c

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了