JDBC源表
功能描述
JDBC连接器是Flink内置的Connector,用于从数据库读取相应的数据。
前提条件
- 要与实例建立增强型跨源连接,且用户可以根据实际所需设置相应安全组规则。
- 如何建立增强型跨源连接,请参考《数据湖探索用户指南》中增强型跨源连接章节。
- 如何设置安全组规则,请参见《虚拟私有云用户指南》中“安全组”章节。
- Flink跨源开发场景中直接配置跨源认证信息存在密码泄露的风险,优先推荐您使用DLI提供的跨源认证。
跨源认证简介及操作方法请参考跨源认证简介。
注意事项
创建Flink OpenSource SQL作业时,在作业编辑界面的“运行参数”处,“Flink版本”需要选择“1.12”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。
语法格式
create table jbdcSource ( attr_name attr_type (',' attr_name attr_type)* (','PRIMARY KEY (attr_name, ...) NOT ENFORCED) (',' watermark for rowtime_column_name as watermark-strategy_expression) ) with ( 'connector' = 'jdbc', 'url' = '', 'table-name' = '', 'username' = '', 'password' = '' );
参数说明
参数 |
是否必选 |
默认值 |
类型 |
说明 |
---|---|---|---|---|
connector |
是 |
无 |
String |
指定要使用的连接器,当前固定为'jdbc'。 |
url |
是 |
无 |
String |
数据库的URL。 |
table-name |
是 |
无 |
String |
读取数据库中的数据所在的表名。 |
driver |
否 |
无 |
String |
连接数据库所需要的驱动。若未配置,则会自动通过URL提取。 |
username |
否 |
无 |
String |
数据库认证用户名,需要和'password'一起配置。 |
password |
否 |
无 |
String |
数据库认证密码,需要和'username'一起配置。 |
scan.partition.column |
否 |
无 |
String |
用于对输入进行分区的列名。分区扫描参数,具体请参考分区扫描功能介绍。 |
scan.partition.num |
否 |
无 |
Integer |
分区的个数。分区扫描参数,具体请参考分区扫描功能介绍。 |
scan.partition.lower-bound |
否 |
无 |
Integer |
第一个分区的最小值。分区扫描参数,具体请参考分区扫描功能介绍。 |
scan.partition.upper-bound |
否 |
无 |
Integer |
最后一个分区的最大值。分区扫描参数,具体请参考分区扫描功能介绍。 |
scan.fetch-size |
否 |
0 |
Integer |
每次从数据库拉取数据的行数。若指定为0,则会忽略sql hint。 |
scan.auto-commit |
否 |
true |
Boolean |
是否设置自动提交,以确定事务中的每个statement是否自动提交 |
pwd_auth_name |
否 |
无 |
String |
DLI侧创建的Password类型的跨源认证名称。用户若配置该配置项则不用在SQL中配置账号和密码。 |
分区扫描功能介绍
为了加速Source任务实例中的数据读取,Flink为JDBC表提供了分区扫描功能。以下参数定义了从多个任务并行读取时如何对表进行分区。
- scan.partition.column:用于对输入进行分区的列名,该列的数据类型必须是数字,日期或时间戳。
- scan.partition.num: 分区数。
- scan.partition.lower-bound:第一个分区的最小值。
- scan.partition.upper-bound:最后一个分区的最大值。
- 建表时以上扫描分区参数必须同时存在或者同时不存在。
- scan.partition.lower-bound和scan.partition.upper-bound参数仅用于决定分区步长,而不是用于过滤表中的行,表中的所有行都会被分区并返回。
数据类型映射
MySQL类型 |
PostgreSQL类型 |
Flink SQL类型 |
---|---|---|
TINYINT |
- |
TINYINT |
SMALLINT TINYINT UNSIGNED |
SMALLINT INT2 SMALLSERIAL SERIAL2 |
SMALLINT |
INT MEDIUMINT SMALLINT UNSIGNED |
INTEGER SERIAL |
INT |
BIGINT INT UNSIGNED |
BIGINT BIGSERIAL |
BIGINT |
BIGINT UNSIGNED |
- |
DECIMAL(20, 0) |
BIGINT |
BIGINT |
BIGINT |
FLOAT |
REAL FLOAT4 |
FLOAT |
DOUBLE DOUBLE PRECISION |
FLOAT8 DOUBLE PRECISION |
DOUBLE |
NUMERIC(p, s) DECIMAL(p, s) |
NUMERIC(p, s) DECIMAL(p, s) |
DECIMAL(p, s) |
BOOLEAN TINYINT(1) |
BOOLEAN |
BOOLEAN |
DATE |
DATE |
DATE |
TIME [(p)] |
TIME [(p)] [WITHOUT TIMEZONE] |
TIME [(p)] [WITHOUT TIMEZONE] |
DATETIME [(p)] |
TIMESTAMP [(p)] [WITHOUT TIMEZONE] |
TIMESTAMP [(p)] [WITHOUT TIMEZONE] |
CHAR(n) VARCHAR(n) TEXT |
CHAR(n) CHARACTER(n) VARCHAR(n) CHARACTER VARYING(n) TEXT |
STRING |
BINARY VARBINARY BLOB |
BYTEA |
BYTES |
- |
ARRAY |
ARRAY |
示例
使用JDBC作为数据源,Print作为sink,从RDS MySQL数据库中读取数据,并写入到Print中。
- 参考增强型跨源连接,根据RDS MySQL所在的虚拟私有云和子网创建相应的增强型跨源,并绑定所要使用的Flink弹性资源池。
- 设置RDS MySQL的安全组,添加入向规则使其对Flink的队列网段放通。参考测试地址连通性根RDS的地址测试队列连通性。若能连通,则表示跨源已经绑定成功,否则表示未成功。
- 登录RDS MySQL,并使用下述命令在flink库下创建orders表,并插入数据。
CREATE TABLE `flink`.`orders` ( `order_id` VARCHAR(32) NOT NULL, `order_channel` VARCHAR(32) NULL, `order_time` VARCHAR(32) NULL, `pay_amount` DOUBLE UNSIGNED NOT NULL, `real_pay` DOUBLE UNSIGNED NULL, `pay_time` VARCHAR(32) NULL, `user_id` VARCHAR(32) NULL, `user_name` VARCHAR(32) NULL, `area_id` VARCHAR(32) NULL, PRIMARY KEY (`order_id`) ) ENGINE = InnoDB DEFAULT CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci;
插入表数据:insert into orders( order_id, order_channel, order_time, pay_amount, real_pay, pay_time, user_id, user_name, area_id) values ('202103241000000001', 'webShop', '2021-03-24 10:00:00', '100.00', '100.00', '2021-03-24 10:02:03', '0001', 'Alice', '330106'), ('202103251202020001', 'miniAppShop', '2021-03-25 12:02:02', '60.00', '60.00', '2021-03-25 12:03:00', '0002', 'Bob', '330110');
- 创建flink opensource sql作业,输入以下作业运行脚本,提交运行作业。
注意:创建作业时,在作业编辑界面的“运行参数”处,“Flink版本”选择“1.12”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。如下脚本中的加粗参数请根据实际环境修改。
CREATE TABLE jdbcSource ( order_id string, order_channel string, order_time string, pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://MySQLAddress:MySQLPort/flink',--flink为RDS MySQL创建的数据库名 'table-name' = 'orders', 'username' = 'MySQLUsername', 'password' = 'MySQLPassword' ); CREATE TABLE printSink ( order_id string, order_channel string, order_time string, pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'print' ); insert into printSink select * from jdbcSource;
- 按照如下方式查看taskmanager.out文件中的数据结果:
- 登录DLI管理控制台,选择“作业管理 > Flink作业”。
- 单击对应的Flink作业名称,选择“运行日志”,单击“OBS桶”,根据作业运行的日期,找到对应日志的文件夹。
- 进入对应日期的文件夹后,找到名字中包含“taskmanager”的文件夹进入,下载获取taskmanager.out文件查看结果日志。
数据结果参考如下:
+I(202103241000000001,webShop,2021-03-24 10:00:00,100.0,100.0,2021-03-24 10:02:03,0001,Alice,330106) +I(202103251202020001,miniAppShop,2021-03-25 12:02:02,60.0,60.0,2021-03-25 12:03:00,0002,Bob,330110)
常见问题
无