Elasticsearch结果表
功能描述
DLI将Flink作业的输出数据输出到云搜索服务CSS的Elasticsearch中。Elasticsearch是基于Lucene的当前流行的企业级搜索服务器,具备分布式多用户的能力。其主要功能包括全文检索、结构化搜索、分析、聚合、高亮显示等。能为用户提供实时搜索、稳定可靠的服务。适用于日志分析、站内搜索等场景。
云搜索服务(Cloud Search Service,简称CSS)为DLI提供托管的分布式搜索引擎服务,完全兼容开源Elasticsearch搜索引擎,支持结构化、非结构化文本的多条件检索、统计、报表。
云搜索服务的更多信息,请参见《云搜索服务用户指南》
前提条件
- 创建Flink OpenSource SQL作业时,在作业编辑界面的“运行参数”处,“Flink版本”需要选择“1.12”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。
- 请务必确保您的账户下已在云搜索服务里创建了集群。如何创建集群请参考《云搜索服务用户指南》中创建集群章节。
- 该场景作业需要运行在DLI的独享队列上,因此要与云搜索服务建立增强型跨源连接,且用户可以根据实际所需设置相应安全组规则。
- 如何建立增强型跨源连接,请参考《数据湖探索用户指南》中增强型跨源连接章节。
- 如何设置安全组规则,请参见《虚拟私有云用户指南》中“安全组”章节。
- Flink跨源开发场景中直接配置跨源认证信息存在密码泄露的风险,优先推荐您使用DLI提供的跨源认证。
跨源认证简介及操作方法请参考跨源认证简介。
注意事项
- 当前只支持CSS集群7.X及以上版本,推荐使用7.6.2版本。
- CSS集群安全组入向规则必须开启ICMP。
- 数据类型的使用,请参考Format章节。
- 提交Flink作业前,建议勾选“保存作业日志”参数,在OBS桶选项中选择日志保存的位置,方便后续作业提交失败或运行异常时,查看日志并分析问题原因。
- Elasticsearch结果表根据是否定义了主键确定是在upsert模式还是在append模式下工作。
- 如果定义了主键,Elasticsearch Sink将在upsert模式下工作,该模式可以消费包含UPDATE和DELETE的消息。
- 如果未定义主键,Elasticsearch Sink将以append模式工作,该模式只能消费INSERT消息。
在Elasticsearch结果表中,主键用于计算Elasticsearch的文档ID。文档ID为最多512个字节不包含空格的字符串。Elasticsearch结果表通过使用“document-id.key-delimiter”参数指定的键分隔符按照DDL中定义的顺序连接所有主键字段,从而为每一行生成一个文档ID字符串。某些类型(例如BYTES、ROW、ARRAY和MAP等)由于没有对应的字符串表示形式,所以不允许其作为主键字段。如果未指定主键,Elasticsearch将自动生成随机的文档ID。
- Elasticsearch结果表同时支持静态索引和动态索引。
- 如果使用静态索引,则索引选项值应为纯字符串,例如myusers,所有记录都将被写入myusers索引。
- 如果使用动态索引,可以使用{field_name}引用记录中的字段值以动态生成目标索引。您还可以使用 {field_name|date_format_string}将TIMESTAMP、DATE和TIME类型的字段值转换为date_format_string指定的格式。date_format_string与Java的DateTimeFormatter兼容。例如,如果设置为myusers-{log_ts|yyyy-MM-dd},则log_ts字段值为2020-03-27 12:25:55的记录将被写入myusers-2020-03-27索引。
语法格式
create table esSink ( attr_name attr_type (',' attr_name attr_type)* (','PRIMARY KEY (attr_name, ...) NOT ENFORCED) ) with ( 'connector' = 'elasticsearch-7', 'hosts' = '', 'index' = '' );
参数说明
参数 |
是否必选 |
默认值 |
类型 |
说明 |
---|---|---|---|---|
connector |
是 |
无 |
String |
指定要使用的连接器,固定为:elasticsearch-7。表示连接到 Elasticsearch 7.x 及更高版本集群。 |
hosts |
是 |
无 |
String |
Elasticsearch所在集群的主机名,多个以';'间隔。 |
index |
是 |
无 |
String |
每条记录的 Elasticsearch 索引。可以是静态索引(例如'myIndex')或动态索引(例如'index-{log_ts|yyyy-MM-dd}')。 |
username |
否 |
无 |
String |
Elasticsearch所在集群的账号。该账号参数需和密码“password”参数同时配置。 |
password |
否 |
无 |
String |
Elasticsearch所在集群的密码。该密码参数需和“username”参数同时配置。 |
document-id.key-delimiter |
否 |
_ |
String |
连接复合主键的拼接符,默认为_。 |
failure-handler |
否 |
fail |
String |
对Elasticsearch请求失败时的故障处理策略。有效的策略是:
|
sink.flush-on-checkpoint |
否 |
true |
Boolean |
是否在检查点刷新。 如果配置为false,在Elasticsearch进行Checkpoint时,connector将不等待确认所有pending请求已完成。因此,connector不会为请求提供at-least-once保证。 |
sink.bulk-flush.max-actions |
否 |
1000 |
Interger |
每个批量请求的最大缓冲操作数。可以设置'0'为禁用它。 |
sink.bulk-flush.max-size |
否 |
2mb |
MemorySize |
每个批量请求的缓冲操作的内存中的最大大小。必须是MB粒度。可以设置'0'为禁用它。 |
sink.bulk-flush.interval |
否 |
1s |
Duration |
刷新缓冲操作的间隔。可以设置'0'为禁用它。 请注意: 'sink.bulk-flush.max-size'和'sink.bulk-flush.max-actions' 都可以设置为'0'刷新间隔,从而允许对缓冲操作进行完整的异步处理。 |
sink.bulk-flush.backoff.strategy |
否 |
DISABLED |
String |
指定在任何刷新操作由于临时请求错误而失败时如何执行重试。有效的策略是:
|
sink.bulk-flush.backoff.max-retries |
否 |
8 |
Integer |
最大退避重试次数。 |
sink.bulk-flush.backoff.delay |
否 |
50ms |
Duration |
每次退避尝试之间的延迟。 对于CONSTANT退避,这只是每次重试之间的延迟。 对于EXPONENTIAL退避,这是初始基本延迟。 |
connection.max-retry-timeout |
否 |
无 |
Duration |
重试之间的最大超时时间。 |
connection.path-prefix |
否 |
无 |
String |
要添加到每个REST通信的前缀字符串,例如, '/v1'。 |
format |
否 |
json |
String |
Elasticsearch连接器支持指定格式。该格式必须生成有效的 json 文档。默认情况下使用内置'json'格式。 请参考Format页面以获取更多详细信息和格式参数。 |
pwd_auth_name |
否 |
无 |
String |
Password类型的跨源认证名称。
|
示例
该示例是从Kafka数据源中读取数据,并写入到Elasticsearch结果表中,其具体步骤如下:
- 参考增强型跨源连接,在DLI上根据Elasticsearch和Kafka所在的虚拟私有云和子网分别创建相应的增强型跨源连接,并绑定所要使用的Flink弹性资源池。
- 设置Elasticsearch和Kafka的安全组,添加入向规则使其对Flink的队列网段放通。参考测试地址连通性分别根据Elasticsearch和Kafka的地址测试队列连通性。若能连通,则表示跨源已经绑定成功,否则表示未成功。
- 登录Elasticsearch集群的Kibana,并选择Dev Tools,输入下列语句并执行,以创建值为orders的index:
PUT /orders { "settings": { "number_of_shards": 1 }, "mappings": { "properties": { "order_id": { "type": "text" }, "order_channel": { "type": "text" }, "order_time": { "type": "text" }, "pay_amount": { "type": "double" }, "real_pay": { "type": "double" }, "pay_time": { "type": "text" }, "user_id": { "type": "text" }, "user_name": { "type": "text" }, "area_id": { "type": "text" } } } }
- 创建flink opensource sql作业,输入以下作业运行脚本,提交运行作业。
注意:创建作业时,在作业编辑界面的“运行参数”处,“Flink版本”选择“1.12”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。如下脚本中的加粗参数请根据实际环境修改。
CREATE TABLE kafkaSource ( order_id string, order_channel string, order_time string, pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'kafka', 'topic' = 'KafkaTopic', 'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkaAddress2:KafkaPort', 'properties.group.id' = 'GroupId', 'scan.startup.mode' = 'latest-offset', "format" = "json" ); CREATE TABLE elasticsearchSink ( order_id string, order_channel string, order_time string, pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'elasticsearch-7', 'hosts' = 'ElasticsearchAddress:ElasticsearchPort', 'index' = 'orders' ); insert into elasticsearchSink select * from kafkaSource;
- 连接Kafka集群,向kafka中插入如下测试数据:
{"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2021-03-24 10:00:00", "pay_amount":"100.00", "real_pay":"100.00", "pay_time":"2021-03-24 10:02:03", "user_id":"0001", "user_name":"Alice", "area_id":"330106"} {"order_id":"202103241606060001", "order_channel":"appShop", "order_time":"2021-03-24 16:06:06", "pay_amount":"200.00", "real_pay":"180.00", "pay_time":"2021-03-24 16:10:06", "user_id":"0001", "user_name":"Alice", "area_id":"330106"}
- 在Elasticsearch集群的Kibana中输入下述语句并查看相应结果:
GET orders/_search
{ "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 2, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "orders", "_type" : "_doc", "_id" : "ae7wpH4B1dV9conjpXeB", "_score" : 1.0, "_source" : { "order_id" : "202103241000000001", "order_channel" : "webShop", "order_time" : "2021-03-24 10:00:00", "pay_amount" : 100.0, "real_pay" : 100.0, "pay_time" : "2021-03-24 10:02:03", "user_id" : "0001", "user_name" : "Alice", "area_id" : "330106" } }, { "_index" : "orders", "_type" : "_doc", "_id" : "au7xpH4B1dV9conjn3er", "_score" : 1.0, "_source" : { "order_id" : "202103241606060001", "order_channel" : "appShop", "order_time" : "2021-03-24 16:06:06", "pay_amount" : 200.0, "real_pay" : 180.0, "pay_time" : "2021-03-24 16:10:06", "user_id" : "0001", "user_name" : "Alice", "area_id" : "330106" } } ] } }