- 最新动态
- 功能总览
- 服务公告
- 产品介绍
- 计费说明
- 快速入门
-
ModelArts用户指南(Standard)
- ModelArts Standard使用流程
- ModelArts Standard准备工作
- ModelArts Standard资源管理
- 使用自动学习实现零代码AI开发
- 使用Workflow实现低代码AI开发
- 使用Notebook进行AI开发调试
- 数据准备与处理
- 使用ModelArts Standard训练模型
- 使用ModelArts Standard部署模型并推理预测
- 制作自定义镜像用于ModelArts Standard
- ModelArts Standard资源监控
- 使用CTS审计ModelArts服务
- ModelArts用户指南(Lite Server)
- ModelArts用户指南(Lite Cluster)
- 最佳实践
-
API参考
- 使用前必读
- API概览
- 如何调用API
- 开发环境管理
- 训练管理
- AI应用管理
- APP认证管理
- 服务管理
- 资源管理
- DevServer管理
- 授权管理
- 配额管理
- 资源标签管理
- 节点池管理
- 应用示例
- 权限策略和授权项
- 公共参数
-
历史API
-
数据管理(旧版)
- 查询数据集列表
- 创建数据集
- 查询数据集详情
- 更新数据集
- 删除数据集
- 查询数据集的统计信息
- 查询数据集监控数据
- 查询数据集的版本列表
- 创建数据集标注版本
- 查询数据集版本详情
- 删除数据集标注版本
- 查询样本列表
- 批量添加样本
- 批量删除样本
- 查询单个样本信息
- 获取样本搜索条件
- 分页查询团队标注任务下的样本列表
- 查询团队标注的样本信息
- 查询数据集标签列表
- 创建数据集标签
- 批量修改标签
- 批量删除标签
- 按标签名称更新单个标签
- 按标签名称删除标签及仅包含此标签的文件
- 批量更新样本标签
- 查询数据集的团队标注任务列表
- 创建团队标注任务
- 查询团队标注任务详情
- 启动团队标注任务
- 更新团队标注任务
- 删除团队标注任务
- 创建团队标注验收任务
- 查询团队标注验收任务报告
- 更新团队标注验收任务状态
- 查询团队标注任务统计信息
- 查询团队标注任务成员的进度信息
- 团队成员查询团队标注任务列表
- 提交验收任务的样本评审意见
- 团队标注审核
- 批量更新团队标注样本的标签
- 查询标注团队列表
- 创建标注团队
- 查询标注团队详情
- 更新标注团队
- 删除标注团队
- 向标注成员发送邮件
- 查询所有团队的标注成员列表
- 查询标注团队的成员列表
- 创建标注团队的成员
- 批量删除标注团队成员
- 查询标注团队成员详情
- 更新标注团队成员
- 删除标注团队成员
- 查询数据集导入任务列表
- 创建导入任务
- 查询数据集导入任务的详情
- 查询数据集导出任务列表
- 创建数据集导出任务
- 查询数据集导出任务的状态
- 同步数据集
- 查询数据集同步任务的状态
- 查询智能标注的样本列表
- 查询单个智能标注样本的信息
- 分页查询智能任务列表
- 启动智能任务
- 获取智能任务的信息
- 停止智能任务
- 查询处理任务列表
- 创建处理任务
- 查询处理任务详情
- 更新处理任务
- 删除处理任务
- 开发环境(旧版)
- 训练管理(旧版)
-
数据管理(旧版)
- SDK参考
-
常见问题
-
一般性问题
- 什么是ModelArts
- ModelArts与其他服务的关系
- ModelArts与DLS服务的区别?
- 如何购买或开通ModelArts?
- 如何获取访问密钥?
- 如何上传数据至OBS?
- 提示“上传的AK/SK不可用”,如何解决?
- 使用ModelArts时提示“权限不足”,如何解决?
- 如何用ModelArts训练基于结构化数据的模型?
- 什么是区域、可用区?
- 在ModelArts中如何查看OBS目录下的所有文件?
- ModelArts数据集保存到容器的哪里?
- ModelArts支持哪些AI框架?
- ModelArts训练和推理分别对应哪些功能?
- 如何查看账号ID和IAM用户ID
- ModelArts AI识别可以单独针对一个标签识别吗?
- ModelArts如何通过标签实现资源分组管理
- 为什么资源充足还是在排队?
- 计费相关
- Standard自动学习
-
Standard数据管理
- 添加图片时,图片大小有限制吗?
- 数据集图片无法显示,如何解决?
- 如何将多个物体检测的数据集合并成一个数据集?
- 导入数据集失败
- 表格类型的数据集如何标注
- 本地标注的数据,导入ModelArts需要做什么?
- 为什么通过Manifest文件导入失败?
- 标注结果存储在哪里?
- 如何将标注结果下载至本地?
- 团队标注时,为什么团队成员收不到邮件?
- 可以两个账号同时进行一个数据集的标注吗?
- 团队标注的数据分配机制是什么?
- 标注过程中,已经分配标注任务后,能否将一个labeler从标注任务中删除?删除后对标注结果有什么影响?如果不能删除labeler,能否删除将他的标注结果从整体标注结果中分离出来?
- 数据标注中,难例集如何定义?什么情况下会被识别为难例?
- 物体检测标注时,支持叠加框吗?
- 如何将两个数据集合并?
- 智能标注是否支持多边形标注?
- 团队标注的完成验收的各选项表示什么意思?
- 同一个账户,图片展示角度不同是为什么?
- 智能标注完成后新加入数据是否需要重新训练?
- 为什么在ModelArts数据标注平台标注数据提示标注保存失败?
- 标注多个标签,是否可针对一个标签进行识别?
- 使用数据处理的数据扩增功能后,新增图片没有自动标注
- 视频数据集无法显示和播放视频
- 使用样例的有标签的数据或者自己通过其他方式打好标签的数据放到OBS桶里,在modelarts中同步数据源以后看不到已标注,全部显示为未标注
- 如何使用soft NMS方法降低目标框堆叠度
- ModelArts标注数据丢失,看不到标注过的图片的标签
- 如何将某些图片划分到验证集或者训练集?
- 物体检测标注时除了位置、物体名字,是否可以设置其他标签,比如是否遮挡、亮度等?
- ModelArts数据管理支持哪些格式?
- 旧版数据集中的数据是否会被清理?
- 数据集版本管理找不到新建的版本
- 如何查看数据集大小
- 如何查看新版数据集的标注详情
- 标注数据如何导出
- 找不到新创建的数据集
- 数据集配额不正确
- 数据集如何切分
- 如何删除数据集图片
- 从AI Gallery下载到桶里的数据集,再在ModelArts里创建数据集,显示样本数为0
-
Standard Notebook
- 规格限制
- 文件上传下载
- 数据存储
- 环境配置相关
- Notebook实例常见错误
- 代码运行常见错误
-
PyCharm Toolkit使用
- 安装ToolKit工具时出现错误,如何处理?
- PyCharm ToolKit工具中Edit Credential时,出现错误
- 为什么无法启动训练?
- 提交训练作业时,出现xxx isn't existed in train_version错误
- 提交训练作业报错“Invalid OBS path”
- 使用PyCharm Toolkit提交训练作业报错NoSuchKey
- 部署上线时,出现错误
- 如何查看PyCharm ToolKit的错误日志
- 如何通过PyCharm ToolKit创建多个作业同时训练?
- 使用PyCharm ToolKit ,提示Error occurs when accessing to OBS
- VS Code使用技巧
-
VS Code连接开发环境失败常见问题
- 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,未弹出VS Code窗口
- 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,VS Code打开后未进行远程连接
- VS Code连接开发环境失败时的排查方法
- 远程连接出现弹窗报错:Could not establish connection to xxx
- 连接远端开发环境时,一直处于"Setting up SSH Host xxx: Downloading VS Code Server locally"超过10分钟以上,如何解决?
- 连接远端开发环境时,一直处于"Setting up SSH Host xxx: Copying VS Code Server to host with scp"超过10分钟以上,如何解决?
- 连接远端开发环境时,一直处于"ModelArts Remote Connect: Connecting to instance xxx..."超过10分钟以上,如何解决?
- 远程连接处于retry状态如何解决?
- 报错“The VS Code Server failed to start”如何解决?
- 报错“Permissions for 'x:/xxx.pem' are too open”如何解决?
- 报错“Bad owner or permissions on C:\Users\Administrator/.ssh/config”或“Connection permission denied (publickey)”如何解决?
- 报错“ssh: connect to host xxx.pem port xxxxx: Connection refused”如何解决?
- 报错"ssh: connect to host ModelArts-xxx port xxx: Connection timed out"如何解决?
- 报错“Load key "C:/Users/xx/test1/xxx.pem": invalid format”如何解决?
- 报错“An SSH installation couldn't be found”或者“Could not establish connection to instance xxx: 'ssh' ...”如何解决?
- 报错“no such identity: C:/Users/xx /test.pem: No such file or directory”如何解决?
- 报错“Host key verification failed.'或者'Port forwarding is disabled.”如何解决?
- 报错“Failed to install the VS Code Server.”或“tar: Error is not recoverable: exitng now.”如何解决?
- VS Code连接远端Notebook时报错“XHR failed”
- VS Code连接后长时间未操作,连接自动断开
- VS Code自动升级后,导致远程连接时间过长
- 使用SSH连接,报错“Connection reset”如何解决?
- 使用MobaXterm工具SSH连接Notebook后,经常断开或卡顿,如何解决?
- VS Code连接开发环境时报错Missing GLIBC,Missing required dependencies
- 使用VSCode-huawei,报错:卸载了‘ms-vscode-remote.remot-sdh’,它被报告存在问题
- 在Notebook中使用自定义镜像常见问题
-
更多功能咨询
- 在Notebook中,如何使用昇腾多卡进行调试?
- 使用Notebook不同的资源规格,为什么训练速度差不多?
- 使用MoXing时,如何进行增量训练?
- 在Notebook中如何查看GPU使用情况
- 如何在代码中打印GPU使用信息
- Ascend上如何查看实时性能指标?
- 不启用自动停止,系统会自动停掉Notebook实例吗?会删除Notebook实例吗?
- JupyterLab目录的文件、Terminal的文件和OBS的文件之间的关系
- ModelArts中创建的数据集,如何在Notebook中使用
- pip介绍及常用命令
- 开发环境中不同Notebook规格资源“/cache”目录的大小
- 开发环境如何实现IAM用户隔离?
- 资源超分对Notebook实例有什么影响?
- 在Notebook中使用tensorboard命令打开日志文件报错Permission denied
-
Standard训练作业
-
功能咨询
- 本地导入的算法有哪些格式要求?
- 欠拟合的解决方法有哪些?
- 旧版训练迁移至新版训练需要注意哪些问题?
- ModelArts训练好后的模型如何获取?
- AI引擎Scikit_Learn0.18.1的运行环境怎么设置?
- TPE算法优化的超参数必须是分类特征(categorical features)吗
- 模型可视化作业中各参数的意义?
- 如何在ModelArts上获得RANK_TABLE_FILE进行分布式训练?
- 如何查询自定义镜像的cuda和cudnn版本?
- Moxing安装文件如何获取?
- 多节点训练TensorFlow框架ps节点作为server会一直挂着,ModelArts是怎么判定训练任务结束?如何知道是哪个节点是worker呢?
- 训练作业的自定义镜像如何安装Moxing?
- 子用户使用专属资源池创建训练作业无法选择已有的SFS Turbo
- 训练过程读取数据
- 编写训练代码
- 创建训练作业
- 管理训练作业版本
- 查看作业详情
-
功能咨询
- Standard推理部署
- Standard资源池
- API/SDK
-
一般性问题
-
故障排除
- 通用问题
- 自动学习
-
开发环境
- 环境配置故障
- 实例故障
- 代码运行故障
- JupyterLab插件故障
-
VS Code连接开发环境失败故障处理
- 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,未弹出VS Code窗口
- 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,VS Code打开后未进行远程连接
- VS Code连接开发环境失败时的排查方法
- 远程连接出现弹窗报错:Could not establish connection to xxx
- 连接远端开发环境时,一直处于"Setting up SSH Host xxx: Downloading VS Code Server locally"超过10分钟以上,如何解决?
- 连接远端开发环境时,一直处于"Setting up SSH Host xxx: Copying VS Code Server to host with scp"超过10分钟以上,如何解决?
- 远程连接处于retry状态如何解决?
- 报错“The VS Code Server failed to start”如何解决?
- 报错“Permissions for 'x:/xxx.pem' are too open”如何解决?
- 报错“Bad owner or permissions on C:\Users\Administrator/.ssh/config”如何解决?
- 报错“Connection permission denied (publickey)”如何解决
- 报错“ssh: connect to host xxx.pem port xxxxx: Connection refused”如何解决?
- 报错"ssh: connect to host ModelArts-xxx port xxx: Connection timed out"如何解决?
- 报错“Load key "C:/Users/xx/test1/xxx.pem": invalid format”如何解决?
- 报错“An SSH installation couldn't be found”或者“Could not establish connection to instance xxx: 'ssh' ...”如何解决?
- 报错“no such identity: C:/Users/xx /test.pem: No such file or directory”如何解决?
- 报错“Host key verification failed.'或者'Port forwarding is disabled.”如何解决?
- 报错“Failed to install the VS Code Server.”或“tar: Error is not recoverable: exiting now.”如何解决?
- VS Code连接远端Notebook时报错“XHR failed”
- VS Code连接后长时间未操作,连接自动断开
- VS Code自动升级后,导致远程连接时间过长
- 使用SSH连接,报错“Connection reset”如何解决?
- 使用MobaXterm工具SSH连接Notebook后,经常断开或卡顿,如何解决?
- VS Code连接开发环境时报错Missing GLIBC,Missing required dependencies
- 使用VSCode-huawei,报错:卸载了‘ms-vscode-remote.remot-sdh’,它被报告存在问题
- 使用VS Code连接实例时,发现VS Code端的实例目录和云上目录不匹配
- VSCode远程连接时卡顿,或Python调试插件无法使用如何处理?
-
自定义镜像故障
- Notebook自定义镜像故障基础排查
- 镜像保存时报错“there are processes in 'D' status, please check process status using 'ps -aux' and kill all the 'D' status processes”或“Buildimge,False,Error response from daemon,Cannot pause container xxx”如何解决?
- 镜像保存时报错“container size %dG is greater than threshold %dG”如何解决?
- 保存镜像时报错“too many layers in your image”如何解决?
- 镜像保存时报错“The container size (xG) is greater than the threshold (25G)”如何解决?
- 镜像保存时报错“BuildImage,True,Commit successfully|PushImage,False,Task is running.”
- 使用自定义镜像创建Notebook后打开没有kernel
- 用户自定义镜像自建的conda环境会查到一些额外的包,影响用户程序,如何解决?
- 用户使用ma-cli制作自定义镜像失败,报错文件不存在(not found)
- 用户使用torch报错Unexpected error from cudaGetDeviceCount
- 其他故障
-
训练作业
- OBS操作相关故障
-
云上迁移适配故障
- 无法导入模块
- 训练作业日志中提示“No module named .*”
- 如何安装第三方包,安装报错的处理方法
- 下载代码目录失败
- 训练作业日志中提示“No such file or directory”
- 训练过程中无法找到so文件
- ModelArts训练作业无法解析参数,日志报错
- 训练输出路径被其他作业使用
- PyTorch1.0引擎提示“RuntimeError: std:exception”
- MindSpore日志提示“ retCode=0x91, [the model stream execute failed]”
- 使用moxing适配OBS路径,pandas读取文件报错
- 日志提示“Please upgrade numpy to >= xxx to use this pandas version”
- 重装的包与镜像装CUDA版本不匹配
- 创建训练作业提示错误码ModelArts.2763
- 训练作业日志中提示 “AttributeError: module '***' has no attribute '***'”
- 系统容器异常退出
- 硬盘限制故障
- 外网访问限制
- 权限问题
- GPU相关问题
-
业务代码问题
- 日志提示“pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields”
- 日志提示“max_pool2d_with_indices_out_cuda_frame failed with error code 0”
- 训练作业失败,返回错误码139
- 训练作业失败,如何使用开发环境调试训练代码?
- 日志提示“ '(slice(0, 13184, None), slice(None, None, None))' is an invalid key”
- 日志报错“DataFrame.dtypes for data must be int, float or bool”
- 日志提示“CUDNN_STATUS_NOT_SUPPORTED. ”
- 日志提示“Out of bounds nanosecond timestamp”
- 日志提示“Unexpected keyword argument passed to optimizer”
- 日志提示“no socket interface found”
- 日志提示“Runtimeerror: Dataloader worker (pid 46212 ) is killed by signal: Killed BP”
- 日志提示“AttributeError: 'NoneType' object has no attribute 'dtype'”
- 日志提示“No module name 'unidecode'”
- 分布式Tensorflow无法使用“tf.variable”
- MXNet创建kvstore时程序被阻塞,无报错
- 日志出现ECC错误,导致训练作业失败
- 超过最大递归深度导致训练作业失败
- 使用预置算法训练时,训练失败,报“bndbox”错误
- 训练作业进程异常退出
- 训练作业进程被kill
- 训练作业运行失败
- 专属资源池创建训练作业
- 训练作业性能问题
-
推理部署
-
模型管理
- 创建模型失败,如何定位和处理问题?
- 导入模型提示该账号受限或者没有操作权限
- 用户创建模型时构建镜像或导入文件失败
- 创建模型时,OBS文件目录对应镜像里面的目录结构是什么样的?
- 通过OBS导入模型时,如何编写打印日志代码才能在ModelArts日志查询界面看到日志
- 通过OBS创建模型时,构建日志中提示pip下载包失败
- 通过自定义镜像创建模型失败
- 导入模型后部署服务,提示磁盘不足
- 创建模型成功后,部署服务报错,如何排查代码问题
- 自定义镜像导入配置运行时依赖无效
- 通过API接口查询模型详情,model_name返回值出现乱码
- 导入模型提示模型或镜像大小超过限制
- 导入模型提示单个模型文件超过5G限制
- 创建模型失败,提示模型镜像构建任务超时,没有构建日志
- 服务部署
- 服务预测
-
模型管理
- MoXing
- API/SDK
- 资源池
- 视频帮助
- 通用参考
链接复制成功!
权限管理
ModelArts作为一个完备的AI开发平台,支持用户对其进行细粒度的权限配置,以达到精细化资源、权限管理之目的。这类特性在大型企业用户的使用场景下很常见,但对个人用户则显得复杂而意义不足,所以建议个人用户在使用ModelArts时,参照配置访问授权来进行初始权限设置。
您是否需要阅读本文档?
如果下述问题您的任何一个回答为“是”,则需要阅读此文档
- 您是企业用户,且
- 存在多个部门,且需要限定不同部门的用户只能访问其专属资源、功能
- 存在多种角色(如管理员、算法开发者、应用运维),希望限制不同角色只能使用特定功能
- 逻辑上存在多套“环境”且相互隔离(如开发环境、预生产环境、生产环境),并限定不同用户在不同环境上的操作权限
- 其他任何需要对特定子用户(组)做出特定权限限制的情况
- 您是个人用户,但已经在IAM创建多个子用户,且期望限定不同子用户所能使用的ModelArts功能、资源不同
- 希望了解ModelArts的权限控制能力细节,期望理解其概念和实操方法
ModelArts的大部分权限管理能力均基于统一身份认证服务(Identity and Access Management,简称IAM)来实现,在您继续往下阅读之前,强烈建议您先行熟悉IAM基本概念,如果能完整理解IAM的所有概念,将更加有助于您理解本文档。
为了支持客户对ModelArts的权限做精细化控制,提供了3个方面的能力来支撑,分别是:权限、委托和工作空间。下面分别讲解。
理解ModelArts的权限与委托
ModelArts每个功能都通过IAM的权限来进行控制。比如,用户(此处指IAM子用户,而非租户)希望在ModelArts创建训练作业,则该用户必须拥有 "modelarts:trainJob:create" 的权限才可以完成操作(无论界面操作还是API调用)。关于如何给一个用户赋权(准确讲是需要先将用户加入用户组,再面向用户组赋权),可以参考IAM的文档《权限管理》。
而ModelArts还有一个特殊的地方在于,为了完成AI计算的各种操作,AI平台在任务执行过程中需要访问用户的其他服务,典型的就是训练过程中,需要访问OBS读取用户的训练数据。在这个过程中,就出现了ModelArts“代表”用户去访问其他云服务的情形。从安全角度出发,ModelArts代表用户访问任何云服务之前,均需要先获得用户的授权,而这个动作就是一个“委托”的过程。用户授权ModelArts再代表自己访问特定的云服务,以完成其在ModelArts平台上执行的AI计算任务。
综上,对于图1 权限管理抽象可以做如下解读:
- 用户访问任何云服务,均是通过标准的IAM权限体系进行访问控制。用户首先需要具备相关云服务的权限(根据您具体使用的功能不同,所需的相关服务权限多寡亦有差异)。
- 权限:用户使用ModelArts的任何功能,亦需要通过IAM权限体系进行正确权限授权。
- 委托:ModelArts上的AI计算任务执行过程中需要访问其他云服务,此动作需要获得用户的委托授权。
ModelArts权限管理
默认情况下,管理员创建的IAM用户没有任何权限,需要将其加入用户组,并给用户组授予策略,才能使得用户组中的用户获得对应的权限,这一过程称为授权。授权后,用户就可以基于授予的权限对云服务进行操作。
ModelArts部署时通过物理区域划分,为项目级服务,授权时“选择授权范围方案”可以选择“指定区域项目资源”,如果授权时指定了区域对应的项目,则该权限仅对此项目生效;简单的做法是直接选择“所有资源”。
ModelArts也支持企业项目,所以选择授权范围方案时,也可以指定企业项目。具体操作参见《创建用户组并授权》。
IAM在对用户组授权的时候,并不是直接将具体的某个权限进行赋权,而是需要先将权限加入到“策略”当中,再把策略赋给用户组。为了方便用户的权限管理,各个云服务都提供了一些预置的“系统策略”供用户直接使用。如果预置的策略不能满足您的细粒度权限控制要求,则可以通过“自定义策略”来进行精细控制。
通常来讲,只给管理员开通“ModelArts FullAccess”,如果不需要太精细的控制,直接给所有用户开通“ModelArts CommonOperations”即可满足大多数小团队的开发场景诉求。如果您希望通过自定义策略做深入细致的权限控制,请阅读ModelArts的IAM权限控制详解。
ModelArts的权限不会凌驾于其他服务的权限之上,当您给用户进行ModelArts赋权时,系统不会自动对其他相关服务的相关权限进行赋权。这样做的好处是更加安全,不会出现预期外的“越权”,但缺点是,您必须同时给用户赋予不同服务的权限,才能确保用户可以顺利完成某些ModelArts操作。
举例,如果用户需要用OBS中的数据进行训练,当已经为IAM用户配置ModelArts训练权限时,仍需同时为其配置对应的OBS权限(读、写、列表),才可以正常使用。其中OBS的列表权限用于支持用户从ModelArts界面上选择要进行训练的数据路径;读权限主要用于数据的预览以及训练任务执行时的数据读取;写权限则是为了保存训练结果和日志。
- 对于个人用户或小型组织,一个简单做法是为IAM用户配置“作用范围”为“全局级服务”的“Tenant Administrator”策略,这会使用户获得除了IAM以外的所有用户权限。在获得便利的同时,由于用户的权限较大,会存在相对较大的安全风险,需谨慎使用。(对于个人用户,其默认IAM账号就已经属于admin用户组,且具备Tenant Administrator权限,无需额外操作)
- 当您需要限制用户操作,仅为ModelArts用户配置OBS相关的最小化权限项,具体操作请参见OBS权限管理。对于其他云服务,也可以进行精细化权限控制,具体请参考对应的云服务文档。
ModelArts委托授权
前文已经介绍,ModelArts在执行AI计算任务过程中,需要“代表”用户去访问其他云服务,而此动作需要提前获得用户的授权。在IAM权限体系下,此类授权动作是通过“委托”来完成。
关于委托的基本概念及操作可以参考对应的IAM文档《委托其他云服务管理资源》。
为了简化用户的委托授权操作,ModelArts增加了自动配置委托授权的支持,用户仅需在ModelArts控制台的“全局配置”页面中,为自己或特定用户配置委托即可。
- 只有具备IAM委托管理权限的用户才可以进行此项操作,通常是IAM admin用户组的成员才具备此权限。
- 目前ModelArts的委托授权操作是分区域操作的,这意味着您需要在每个您所用到的区域均执行委托授权操作。
在ModelArts控制台的“全局配置”页面,单击“添加授权”后,系统会引导您为特定用户或所有用户进行委托配置,通常默认会创建一个名为“modelarts_agency_<用户名>_随机ID”的委托条目。在权限配置的区域,您可以选择ModelArts提供的预置配置,也可以自定义选择您所授权的策略。当然如果这两种形态对于您的诉求均过于粗犷,您也可以直接在IAM管理页面里创建完全由您进行精细化配置的委托(需要委托给ModelArts服务),然后在此页面的委托选择里使用“已有委托”“”(而非“新增委托”)。
至此,您应该已经发现了一个细节,ModelArts在使用委托时,是将其与用户进行关联的,用户与委托的关系是多对1的关系。这意味着,如果两个用户需要配置的委托一致,那么不需要为每个用户都创建一个独立的委托项,只需要将两个用户都“指向”同一个委托项即可。

每个用户必须关联委托才可以使用ModelArts,但即使委托所赋之权限不足,在API调用之初也不会报错,只有到系统具体使用到该功能时,才会发生问题。例如,用户在创建训练任务时打开了“消息通知”,该功能依赖SMN委托授权,但只有训练任务运行过程中,真正需要发送消息时,系统才会“出错”,而有些错误系统会选择“忽略”,另一些错误则可能导致任务直接失败。当您做深入的“权限最小化”限制时,请确保您在ModelArts上将要执行的操作仍旧有足够的权限。
严格授权模式
严格授权模式是指在IAM中创建的子用户必须由账号管理员显式在IAM中授权,才能访问ModelArts服务,管理员用户可以通过授权策略为普通用户精确添加所需使用的ModelArts功能的权限。
相对的,在非严格授权模式下,子用户不需要显式授权就可以使用ModelArts,管理员需要在IAM上为子用户配置Deny策略来禁止子用户使用ModelArts的某些功能。
账号的管理员用户可以在“全局配置”页面修改授权模式。
如无特殊情况,建议优先使用严格授权模式。在严格授权模式下,子用户要使用ModelArts的功能都需经过授权,可以更精确的控制子用户的权限范围,达成权限最小化的安全策略。
用工作空间限制资源访问
工作空间是ModelArts面向企业客户提供的一个高阶功能,用于进一步将用户的资源划分在多个逻辑隔离的空间中,并支持以空间维度进行访问的权限限定。目前工作空间功能是“受邀开通”状态,作为企业用户您可以通过您对口的技术支持经理申请开通。
在开通工作空间后,系统会默认为您创建一个“default”空间,您之前所创建的所有资源,均在该空间下。当您创建新的工作空间之后,相当于您拥有了一个新的“ModelArts分身”,您可以通过菜单栏的左上角进行工作空间的切换,不同工作空间中的工作互不影响。
创建工作空间时,必须绑定一个企业项目。多个工作空间可以绑定到同一个企业项目,但一个工作空间不可以绑定多个企业项目。借助工作空间,您可以对不同用户的资源访问和权限做更加细致的约束,具体为如下两种约束:
- 只有被授权的用户才能访问特定的工作空间(在创建、管理工作空间的页面进行配置),这意味着,像数据集、算法等AI资产,均可以借助工作空间做访问的限制。
- 在前文提到的权限授权操作中,如果“选择授权范围方案”时设定为“指定企业项目资源”,那么该授权仅对绑定至该企业项目的工作空间生效。
- 工作空间的约束与权限授权的约束是叠加生效的,意味着对于一个用户,必须同时拥有工作空间的访问权和训练任务的创建权限(且该权限覆盖至当前的工作空间),他才可以在这个空间里提交训练任务。
- 对于已经开通企业项目但没有开通工作空间的用户,其所有操作均相当于在“default”企业项目里进行,请确保对应权限已覆盖了名为default的企业项目。
- 对于未开通企业项目的用户,不受上述约束限制。
本章小结
对于ModelArts的权限管理,总结了如下几条关键点:
- 如果您是个人用户,则不需要考虑细粒度权限问题,您的账户默认具备使用ModelArts的所有权限。
- ModelArts平台的所有功能均通过IAM体系进行了权限管控,您可以通过标准的IAM授权动作,来对特定用户进行精细化的权限管控。
- 对于所有用户(包括个人用户),需要完成对ModelArts的委托授权(ModelArts > 全局配置 > 添加授权),才能使用特定的功能,否则会造成您的操作出现不可预期的错误。
- 对于开通了企业项目的用户,可以进一步申请开通ModelArts的工作空间,通过组合使用基础授权和工作空间,来达成更加复杂的权限控制目的。