Updated on 2024-07-26 GMT+08:00

Deleting a Cluster

Function

This API is used to delete a specified cluster.

The URL for cluster management is in the format of https://Endpoint/uri. In the URL, uri indicates the resource path, that is, the path for API access.

Calling Method

For details, see Calling APIs.

URI

DELETE /api/v3/projects/{project_id}/clusters/{cluster_id}

Table 1 Path Parameters

Parameter

Mandatory

Type

Description

project_id

Yes

String

Project ID. For details about how to obtain the value, see How to Obtain Parameters in the API URI.

cluster_id

Yes

String

Cluster ID. For details about how to obtain the value, see How to Obtain Parameters in the API URI.

Table 2 Query Parameters

Parameter

Mandatory

Type

Description

delete_efs

No

String

Whether to delete SFS Turbo volumes.

Value options:

  • true or block (The system starts to delete the object. If the deletion fails, subsequent processes are blocked.)

  • try (The system starts to delete the object. If the deletion fails, no deletion retry is performed, and subsequent processes are not blocked.)

  • false or skip (The object is not deleted. These are the default value options.)

delete_eni

No

String

Whether to delete ENI ports (native elastic network interface).

Value options:

  • true or block (The system starts to delete the object. If the deletion fails, subsequent processes are blocked.)

  • try (The system starts to delete the object. If the deletion fails, no deletion retry is performed, and subsequent processes are not blocked.)

  • false or skip (Skip the deletion.)

delete_evs

No

String

Whether to delete EVS disks.

Value options:

  • true or block (The system starts to delete the object. If the deletion fails, subsequent processes are blocked.)

  • try (The system starts to delete the object. If the deletion fails, no deletion retry is performed, and subsequent processes are not blocked.)

  • false or skip (The object is not deleted. These are the default value options.)

delete_net

No

String

Whether to delete cluster Service and ingress resources, such as ELB load balancers.

Value options:

  • true or block (The system starts to delete the object. If the deletion fails, subsequent processes are blocked.)

  • try (The system starts to delete the object. If the deletion fails, no deletion retry is performed, and subsequent processes are not blocked.)

  • false or skip (Skip the deletion.)

delete_obs

No

String

Whether to delete OBS volumes.

Value options:

  • true or block (The system starts to delete the object. If the deletion fails, subsequent processes are blocked.)

  • try (The system starts to delete the object. If the deletion fails, no deletion retry is performed, and subsequent processes are not blocked.)

  • false or skip (The object is not deleted. These are the default value options.)

delete_sfs

No

String

Whether to delete SFS volumes.

Value options:

  • true or block (The system starts to delete the object. If the deletion fails, subsequent processes are blocked.)

  • try (The system starts to delete the object. If the deletion fails, no deletion retry is performed, and subsequent processes are not blocked.)

  • false or skip (The object is not deleted. These are the default value options.)

delete_sfs30

No

String

Whether to delete an SFS 3.0 volume.

Example value:

  • true or block (The system starts to delete the object. If the deletion fails, subsequent processes are blocked.)

  • try (The system starts to delete the object. If the deletion fails, no deletion retry is performed, and subsequent processes are not blocked.)

  • false or skip (The object is not deleted. These are the default value options.)

lts_reclaim_policy

No

String

Whether to delete an LTS log stream.

Options:

  • true or block (The system starts to delete the object. If the deletion fails, subsequent processes are blocked.)

  • try (The system starts to delete the object. If the deletion fails, no deletion retry is performed, and subsequent processes will proceed.)

  • false or skip (The deletion is skipped. This is the default option.)

tobedeleted

No

String

Whether to use the preset deletion mode for yearly/monthly-billed clusters. This parameter is valid only for yearly/monthly-billed clusters.

This parameter must be used together with other deletion parameters. You can specify parameter values or the system uses the default ones.

If this parameter is used, the cluster does not delete resources. All query parameters of this request will be preset in the cluster database for identifying the resources to be deleted when a yearly/monthly-billed cluster is unsubscribed from.

This request can be executed for multiple times. Each request overwrites the deletion parameters preset last time.

Value options:

  • true (preset mode. Only the query parameters are preset and the deletion is not performed.)

ondemand_node_policy

No

String

Policies for processing all pay-per-use nodes in a cluster.

Options:

  • delete: The nodes will be deleted.

  • reset: The nodes will be reset and retained. The data stored in the nodes will not be retained.

  • retain: The nodes and the data stored in the nodes will be retained. The nodes will not be reset.

periodic_node_policy

No

String

Policies for processing all yearly/monthly nodes in a cluster.

Options:

  • reset: The nodes will be reset and retained. The data stored in the nodes will not be retained.

  • retain: The nodes and the data stored in the nodes will be retained. The nodes will not be reset.

Request Parameters

Table 3 Request header parameters

Parameter

Mandatory

Type

Description

Content-Type

Yes

String

Message body type (format).

X-Auth-Token

Yes

String

Requests for calling an API can be authenticated using either a token or AK/SK. If token-based authentication is used, this parameter is mandatory and must be set to a user token. For details, see Obtaining a User Token.

Response Parameters

Status code: 200

Table 4 Response body parameters

Parameter

Type

Description

kind

String

API type. The value is fixed at Cluster or cluster and cannot be changed.

apiVersion

String

API version. The value is fixed at v3 and cannot be changed.

metadata

ClusterMetadata object

Basic information about a cluster. Metadata is a collection of attributes.

spec

ClusterSpec object

Detailed description of the cluster. CCE creates or updates objects by defining or updating spec.

status

ClusterStatus object

Cluster status and job ID of the cluster creation job.

Table 5 ClusterMetadata

Parameter

Type

Description

name

String

Cluster name.

Enter 4 to 128 characters, starting with a lowercase letter and not ending with a hyphen (-). Only lowercase letters, digits, and hyphens (-) are allowed.

uid

String

Cluster ID, which uniquely identifies a cluster. This ID is automatically generated after a cluster is created. Only the automatically generated ID will take effect. When you create a yearly/monthly cluster, no cluster ID will be returned in the response body.

alias

String

Alias of a cluster name displayed on the CCE console, and the name can be changed.

Enter 4 to 128 characters not starting or ending with a hyphen (-). Only digits, letters, and hyphens (-) are allowed.

A cluster alias must be unique.

In the request body for creating or updating a cluster, if the cluster alias is not specified or is left blank, the alias of the cluster is the same as the cluster name. In the response body for obtaining a cluster, the cluster alias is returned. If the cluster alias is not configured, the cluster name is returned.

annotations

Map<String,String>

Cluster annotations, in the format of key-value pairs.

"annotations": {
   "key1" : "value1",
   "key2" : "value2"
}
NOTE:
  • annotations: Does not label or select objects. The metadata in annotations may be small or large, structured or unstructured, and may include characters that are not allowed in labels.

  • This field is not stored in the database and is used only to specify the add-ons to be installed in the cluster.

  • Install ICAgent during cluster creation by adding the key-value pair "cluster.install.addons.external/install":"[{"addonTemplateName":"icagent"}]".

labels

Map<String,String>

Cluster labels, in the format of key-value pairs.

NOTE:

The value of this field is automatically generated by the system and is used by the frontend to identify the features supported by the cluster during the upgrade. Customized values are invalid.

creationTimestamp

String

Time when the cluster was created.

updateTimestamp

String

Time when the cluster was updated.

Table 6 ClusterSpec

Parameter

Type

Description

category

String

Cluster type. Options:

  • CCE: CCE cluster

    CCE cluster supports hybrid deployment of VMs and BMSs, and heterogeneous nodes such as GPU and NPU nodes, allowing you to run your containers in a secure and stable container runtime environment based on a high-performance network model.

  • Turbo: CCE Turbo cluster

    One-stop, cost-effective CCE Turbo clusters run on the cloud native 2.0 infrastructure featuring hardware-software synergy for lossless networking, high security and reliability, and intelligent scheduling.

type

String

Master node architecture:

  • VirtualMachine: x86

  • ARM64: Arm-based Kunpeng

flavor

String

Cluster specifications. Specifications of clusters 1.15 or later versions can be changed after they are created. For details, see Modifying Cluster Specifications. Options:

  • cce.s1.small: a small-scale CCE cluster with one master node and a maximum of 50 worker nodes

  • cce.s1.medium: a medium-scale CCE cluster with one master node and a maximum of 200 worker nodes

  • cce.s2.small: a small-scale CCE cluster with three master nodes and a maximum of 50 worker nodes

  • cce.s2.medium: a medium-scale CCE cluster with three master nodes and a maximum of 200 worker nodes

  • cce.s2.large: a large-scale CCE cluster with three master nodes and a maximum of 1,000 worker nodes

  • cce.s2.xlarge: an ultra-large-scale CCE cluster with three master nodes and a maximum of 2,000 worker nodes

NOTE:

The fields in the parameters are described as follows:

  • s1: specifies a cluster with one master node. If the master node is faulty, the cluster will become unavailable, but running workloads in the cluster are not affected.

  • s2: specifies an HA cluster with three master nodes. If one of the master nodes is faulty, the cluster is still available.

  • dec: specifies a DeC CCE cluster. For example, cce.dec.s1.small specifies a small-scale, DeC CCE cluster with one master node and a maximum of 50 worker nodes.

  • small: specifies that a cluster can manage a maximum of 50 worker nodes.

  • medium: specifies that a cluster can manage a maximum of 200 worker nodes.

  • large: specifies that a cluster can manage a maximum of 1,000 worker nodes.

  • xlarge: specifies that a cluster can manage a maximum of 2,000 worker nodes.

version

String

Cluster version, which mirrors the baseline version of the Kubernetes community. The latest version is recommended.

You can create clusters of two latest versions on the CCE console. To learn which cluster versions are available, log in to the CCE console, create a cluster, and check the Cluster Version parameter.

You can call APIs to create clusters of other versions. However, these cluster versions will be gradually terminated. For details about the support policy, see the CCE announcement.

NOTE:
  • If not specified, a cluster of the latest version will be created.

  • If a baseline cluster version is specified but the R version is not specified, a cluster of the latest R version will be created by default. It is a good practice not to specify the R version.

  • CCE Turbo clusters of v1.19 or later are commercially available.

platformVersion

String

CCE cluster platform version, indicating the internal version under the cluster version (version). Platform versions are used to trace iterations in a major cluster version. They are unique within a major cluster version and recounted when the major cluster version changes. This parameter cannot be customized. When you create a cluster, the latest corresponding platform version is automatically selected.

The format of platformVersion is cce.X.Y.

  • X: internal feature version, indicating changes in features, patches, or OS support in the cluster version. The value starts from 1 and increases monotonically.

  • Y: patch version of an internal feature version. It is used only for software package update after the feature version is brought online. No other modification is involved. The value starts from 0 and increases monotonically.

description

String

Cluster description, for example, which purpose the cluster is intended to serve. By default, this field is left unspecified. To modify cluster description after the cluster is created, call the API for updating cluster information or go to the cluster details page on the CCE console. Only UTF-8 encoding is supported.

customSan

Array of strings

Custom SAN field in the server certificate of the cluster API server, which must comply with the SSL and X509 format specifications.

  1. Duplicate names are not allowed.

  2. Must comply with the IP address and domain name formats.

Example:

SAN 1: DNS Name=example.com
SAN 2: DNS Name=www.example.com
SAN 3: DNS Name=example.net
SAN 4: IP Address=93.184.216.34

ipv6enable

Boolean

Whether the cluster supports IPv6 addresses. This field is supported in clusters of v1.15 and later versions.

hostNetwork

HostNetwork object

Node networking parameters, including VPC and subnet ID. This field is mandatory because nodes in a cluster communicate with each other by using a VPC.

containerNetwork

ContainerNetwork object

Container networking parameters, including the container network model and container CIDR block.

eniNetwork

EniNetwork object

Configuration of the Cloud Native Network 2.0 model. Specify this field when creating a CCE Turbo cluster.

serviceNetwork

ServiceNetwork object

Service CIDR block, including IPv4 CIDR blocks.

authentication

Authentication object

Configurations of the cluster authentication mode.

billingMode

Integer

Billing mode of a cluster.

  • 0: pay-per-use

  • 1: yearly/monthly

Defaults to pay-per-use.

masters

Array of MasterSpec objects

Advanced configurations of master nodes

kubernetesSvcIpRange

String

Service CIDR blocks for Kubernetes clusterIPs. This field is available only for clusters of v1.11.7 and later. If this parameter is not specified during cluster creation, the default value 10.247.0.0/16 will be used. This parameter is deprecated. Use serviceNetwork instead. The new field contains the IPv4 CIDR blocks.

clusterTags

Array of ResourceTag objects

Cluster resource tags.

kubeProxyMode

String

Service forwarding mode. Options:

  • iptables: Traditional kube-proxy uses iptables rules to implement Service load balancing. In this mode, too many iptables rules will be generated when many Services are deployed. In addition, non-incremental updates will cause latency and even tangible performance issues in the case of service traffic spikes.

  • ipvs: Optimized kube-proxy mode with higher throughput and faster speed. This mode supports incremental updates and can keep connections uninterrupted during Service updates. It is suitable for large-sized clusters.

NOTE:

iptables is used by default.

az

String

AZ. This field is returned only for a query.

For details about AZs supported by CCE, see Regions and Endpoints.

extendParam

ClusterExtendParam object

Extended field to decide whether the cluster will span across AZs or belong to a specified enterprise project, or whether a dedicated CCE cluster is to be created.

supportIstio

Boolean

Whether Istio is supported.

configurationsOverride

Array of PackageConfiguration objects

Cluster default component configuration override.

If you specify a component or parameter that is not supported, the configuration item will be ignored.

For details about the supported components and their parameters, see Cluster Configuration Management.

Table 7 HostNetwork

Parameter

Type

Description

vpc

String

ID of the VPC used to create a master node.

You can obtain it in either of the following ways:

  • Method 1: Log in to the VPC console and view the VPC ID in the VPC details page.

  • Method 2: Use the VPC API to obtain VPC IDs.

    For details, see Querying VPCs.

subnet

String

Network ID of the subnet used to create a master node. You can obtain it in either of the following ways:

  • Method 1: Log in to the VPC console and click the target subnet on the Subnets page. You can view the network ID on the displayed page.

  • Method 2: Use the VPC API to obtain subnets.

    For details, see Querying Subnets.

SecurityGroup

String

Default worker node security group ID of the cluster. If specified, the cluster will be bound to the target security group. Otherwise, the system will automatically create a default worker node security group for you. The default worker node security group needs to allow access from certain ports to ensure normal communications. For details, see How Do I Harden the Automatically Created Security Group Rules for CCE Cluster Nodes.

Table 8 ContainerNetwork

Parameter

Type

Description

mode

String

Container network model. Select one of the following possible values:

  • overlay_l2: an overlay_l2 network (container tunnel network) built for containers by using OpenVSwitch (OVS).

  • vpc-router: an underlay_l2 network built for containers by using IPvlan and custom VPC routes.

  • eni: Cloud Native Network 2.0. This model has integrated cloud native elastic network interfaces (ENIs), uses VPC CIDR blocks to allocate container IP addresses, and allows direct traffic distribution to containers through a load balancer for high performance. Use this model when creating a CCE Turbo cluster.

cidr

String

Container CIDR block. Recommended: 10.0.0.0/12-19, 172.16.0.0/16-19, or 192.168.0.0/16-19. If the selected CIDR block conflicts with existing ones, an error will be reported.

Not editable after the cluster is created. (deprecated. A specified cidrs will make cidr invalid.)

cidrs

Array of ContainerCIDR objects

List of container CIDR blocks. In clusters of v1.21 or later, the cidrs field is used. When the cluster network type is vpc-router, you can configure a maximum of 20 container CIDR blocks. In cluster versions earlier than v1.21, if the cidrs field is used, the first CIDR element in the array is used as the container CIDR block.

The configuration cannot be modified after the cluster is created.

Table 9 ContainerCIDR

Parameter

Type

Description

cidr

String

Container CIDR block. Recommended: 10.0.0.0/12-19, 172.16.0.0/16-19, and 192.168.0.0/16-19

Table 10 EniNetwork

Parameter

Type

Description

eniSubnetId

String

IPv4 subnet ID of ENI subnet. (IPv6 is not supported and is being discarded.) You can obtain it in either of the following ways:

  • Method 1: Log in to the VPC console and click the target subnet on the Subnets page. You can view the IPv4 subnet ID on the displayed page.

  • Method 2: Use the VPC API to obtain subnet IDs.

    For details, see Querying Subnets.

eniSubnetCIDR

String

ENI subnet CIDR (being discarded)

subnets

Array of NetworkSubnet objects

List of IPv4 subnet IDs

Table 11 NetworkSubnet

Parameter

Type

Description

subnetID

String

IPv4 subnet ID of the subnet for creating master nodes. IPv6 is not supported. You can obtain it in either of the following ways:

  • Method 1: Log in to the VPC console and click the target subnet on the Subnets page. You can view the IPv4 subnet ID on the displayed page.

  • Method 2: Use the VPC API to obtain subnets.

    For details, see Querying Subnets.

Table 12 ServiceNetwork

Parameter

Type

Description

IPv4CIDR

String

Value range of the Kubernetes clusterIP IPv4 CIDR blocks. If this parameter is not specified during cluster creation, the default value 10.247.0.0/16 will be used.

Table 13 Authentication

Parameter

Type

Description

mode

String

Cluster authentication mode.

  • Clusters of Kubernetes v1.11 or earlier support x509, rbac, and authenticating_proxy. Defaults to x509.

  • Clusters of Kubernetes v1.13 or later support rbac and authenticating_proxy. Defaults to rbac.

authenticatingProxy

AuthenticatingProxy object

Configuration related to the authenticating_proxy mode. This field is mandatory when the authentication mode is authenticating_proxy.

Table 14 AuthenticatingProxy

Parameter

Type

Description

ca

String

X509 CA certificate (Base64-encoded) configured in authenticating_proxy mode. This field is mandatory when the cluster authentication mode is authenticating_proxy.

Maximum size: 1 MB

cert

String

Client certificate issued by the X509 CA certificate configured in authenticating_proxy mode, which is used for authentication from kube-apiserver to the extended API server. (The value must be Base64-encoded.) This field is mandatory when the cluster authentication mode is authenticating_proxy.

privateKey

String

Private key of the client certificate issued by the X509 CA certificate configured in authenticating_proxy mode, which is used for authentication from kube-apiserver to the extended API server. The private key used by the Kubernetes cluster does not support password encryption. Use an unencrypted private key. (The value must be Base64-encoded.) This field is mandatory when the cluster authentication mode is authenticating_proxy.

Table 15 MasterSpec

Parameter

Type

Description

availabilityZone

String

AZ

Table 16 ResourceTag

Parameter

Type

Description

key

String

Key.

  • Cannot be null. Max characters: 128.

  • Use letters, digits, and spaces in UTF-8 format.

  • Can contain the following special characters: _.:/=+-@.

  • Cannot start with _sys_.

value

String

Value.

  • Can be null but not the default. Max characters: 255.

  • Use letters, digits, and spaces in UTF-8 format.

  • Can contain the following special characters: _.:/=+-@.

Table 17 ClusterExtendParam

Parameter

Type

Description

clusterAZ

String

AZ of master nodes in a cluster.

For details about AZs supported by CCE, see Regions and Endpoints.

  • multi_az: (Optional) The cluster will span across AZs. Multiple AZs can be configured only when a cluster with multiple master nodes is used.

  • AZ of the dedicated cloud computing pool: The cluster will be deployed in the DeC AZ. It is mandatory for DeC CCE clusters.

dssMasterVolumes

String

Whether the system and data disks of a master node use dedicated distributed storage. If this parameter is omitted or left unspecified, EVS disks are used by default.

This parameter is mandatory for dedicated CCE clusters. It is in the following format:

<rootVol.dssPoolID>.<rootVol.volType>;<dataVol.dssPoolID>.<dataVol.volType>

Field description:

  • rootVol is the system disk. dataVol is the data disk.

  • dssPoolID indicates the ID of the DSS storage pool.

  • volType indicates the storage volume type of the DSS storage pool, such as SAS and SSD.

Example: c950ee97-587c-4f24-8a74-3367e3da570f.sas;6edbc2f4-1507-44f8-ac0d-eed1d2608d38.ssd

NOTE:

This field cannot be configured for non-dedicated CCE clusters.

enterpriseProjectId

String

ID of the enterprise project that a cluster belongs to.

NOTE:
  • An enterprise project can be configured only after the enterprise project function is enabled.

  • The enterprise project to which the cluster belongs must be the same as that to which other cloud service resources associated with the cluster belong.

kubeProxyMode

String

Service forwarding mode. Two modes are available:

  • iptables: Traditional kube-proxy uses iptables rules to implement Service load balancing. In this mode, too many iptables rules will be generated when many Services are deployed. In addition, non-incremental updates will cause latency and even tangible performance issues in the case of service traffic spikes.

  • ipvs: Optimized kube-proxy mode with higher throughput and faster speed. This mode supports incremental updates and can keep connections uninterrupted during Service updates. It is suitable for large-sized clusters.

NOTE:

This parameter has been deprecated. If this parameter and kubeProxyMode in ClusterSpec are specified at the same time, the latter is used.

clusterExternalIP

String

EIP of the master node

alpha.cce/fixPoolMask

String

Number of mask bits of the fixed IP address pool of the container network model. This field is supported only for the VPC network model (vpc-router).

This parameter determines the number of container IP addresses that can be allocated to a node. The maximum number of pods that can be created on a node is decided by this parameter and maxPods set during node creation.

For details, see Maximum Number of Pods That Can Be Created on a Node.

For integer characters, the value ranges from 24 to 28.

decMasterFlavor

String

Specifications of the master node in the dedicated hybrid cluster.

dockerUmaskMode

String

Default UmaskMode configuration of Docker in a cluster. The value can be secure or normal. If this parameter is not specified, normal is used by default.

kubernetes.io/cpuManagerPolicy

String

Cluster CPU management policy. The value can be none (or null) or static. The default value is none (or null).

  • none or null: disables pods from exclusively occupying CPUs. Select this option if you want a large pool of shareable CPU cores.

  • static: enables pods to exclusively occupy CPUs. Select this option if your workload is sensitive to CPU cache and scheduling latency. In a CCE Turbo cluster, this setting is valid only for nodes where common containers, not Kata containers, run.

orderID

String

Order ID. This parameter is returned in the response when the cluster is billed on a yearly/monthly basis with auto payment enabled (only in creation scenarios).

periodType

String

  • month: The unit is month.

  • year: The unit is year.

NOTE:

Request parameter, which is valid and mandatory when billingMode is set to 1 (yearly/monthly billing).

Response parameter, which is returned only when a yearly/monthly cluster is created.

periodNum

Integer

Subscription duration. The value can be:

  • If periodType is month, the value ranges from 1 to 9.

  • If periodType is year, the value ranges from 1 to 3.

NOTE:

Request parameter, which is valid and mandatory when billingMode is set to 1.

Response parameter, which is returned only when a yearly/monthly cluster is created.

isAutoRenew

String

Whether auto renewal is enabled.

  • true: Auto renewal is enabled.

  • false: Auto renewal is not enabled.

NOTE:

This field is valid when billingMode is set to 1. If not specified, auto renewal is not enabled.

isAutoPay

String

Whether to deduct fees automatically.

  • true: Enable automatic fee deduction.

  • false: Do not enable automatic fee deduction.

NOTE:

This field is valid when billingMode is set to 1. If not specified, auto fee deduction is not enabled.

upgradefrom

String

Records of how the cluster is upgraded to the current version

Table 18 PackageConfiguration

Parameter

Type

Description

name

String

Component name.

configurations

Array of ConfigurationItem objects

Component configuration item.

Table 19 ConfigurationItem

Parameter

Type

Description

name

String

Component configuration item name.

value

Object

Component configuration item value.

Table 20 ClusterStatus

Parameter

Type

Description

phase

String

Cluster status. Options:

  • Available: The cluster is running properly.

  • Unavailable: The cluster is exhibiting unexpected behavior. Manually delete it.

  • ScalingUp: Nodes are being added to the cluster.

  • ScalingDown: The cluster is being downsized to fewer nodes.

  • Creating: The cluster is being created.

  • Deleting: The cluster is being deleted.

  • Upgrading: The cluster is being upgraded.

  • Resizing: Cluster specifications are being changed.

  • RollingBack: The cluster is being rolled back.

  • RollbackFailed: The cluster rollback is abnormal.

  • Hibernating: The cluster is being hibernated.

  • Hibernation: The cluster is in hibernation.

  • Awaking: The cluster is being woken up from hibernation.

  • Empty: The cluster does not have any resources. This field is discarded.

  • Error: Resources in the cluster are abnormal. Manually delete the cluster.

jobID

String

ID of the task associated with the cluster in the current state. Options:

  • ID of the associated task returned when creating a cluster. You can use it to obtain the auxiliary tasks for creating a cluster.

  • ID of the associated task returned when a cluster fails to be deleted or is deleted. If this parameter is not empty, you can use the task ID to obtain the auxiliary tasks for deleting a cluster.

NOTE:

Tasks are short-lived. Do not use task information in scenarios such as cluster status determination.

reason

String

Reason of cluster state change. This parameter is returned if the cluster is not in the Available state.

message

String

Detailed information about why the cluster changes to the current state. This parameter is returned if the cluster is not in the Available state.

endpoints

Array of ClusterEndpoints objects

Access address of kube-apiserver in the cluster.

isLocked

Boolean

The CBC resource is locked.

lockScene

String

Scenario where the CBC resource is locked.

lockSource

String

Resource locking.

lockSourceId

String

ID of the locked resource.

deleteOption

Object

Whether to delete configurations. This parameter is contained only in the response to the deletion request.

deleteStatus

Object

Whether to delete the status information. This parameter is contained only in the response to the deletion request.

Table 21 ClusterEndpoints

Parameter

Type

Description

url

String

Access address of kube-apiserver in the cluster.

type

String

Type of the cluster access address.

  • Internal: address for internal network access

  • External: address for external network access

Example Requests

None

Example Responses

Status code: 200

The job for deleting a cluster is successfully delivered.

{
  "kind" : "Cluster",
  "apiVersion" : "v3",
  "metadata" : {
    "alias" : "mycluster",
    "name" : "mycluster",
    "uid" : "fc563b3c-9552-11e8-8beb-0255ac106311",
    "creationTimestamp" : "2018-08-01 06:20:28.81667161 +0000 UTC",
    "updateTimestamp" : "2018-08-01 09:23:38.944333282 +0000 UTC"
  },
  "spec" : {
    "type" : "VirtualMachine",
    "flavor" : "cce.s1.small",
    "version" : "v1.7.3-r13",
    "description" : "new description",
    "hostNetwork" : {
      "vpc" : "cbed56e8-03e7-4304-a477-b54bef0857c3",
      "subnet" : "5de50062-2be2-4a52-893e-e0906e3e9c9d"
    },
    "containerNetwork" : {
      "mode" : "overlay_l2",
      "cidr" : "172.16.0.0/16"
    },
    "authentication" : {
      "mode" : "x509",
      "authenticatingProxy" : { }
    },
    "billingMode" : 0
  },
  "status" : {
    "phase" : "Available",
    "jobID" : "e8ebf96c-956d-11e8-a949-0255ac10575d",
    "endpoints" : [ {
      "url" : "https://192.168.0.16:5443",
      "type" : "Internal"
    } ]
  }
}

SDK Sample Code

The SDK sample code is as follows.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
package com.huaweicloud.sdk.test;

import com.huaweicloud.sdk.core.auth.ICredential;
import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.core.exception.ConnectionException;
import com.huaweicloud.sdk.core.exception.RequestTimeoutException;
import com.huaweicloud.sdk.core.exception.ServiceResponseException;
import com.huaweicloud.sdk.cce.v3.region.CceRegion;
import com.huaweicloud.sdk.cce.v3.*;
import com.huaweicloud.sdk.cce.v3.model.*;


public class DeleteClusterSolution {

    public static void main(String[] args) {
        // The AK and SK used for authentication are hard-coded or stored in plaintext, which has great security risks. It is recommended that the AK and SK be stored in ciphertext in configuration files or environment variables and decrypted during use to ensure security.
        // In this example, AK and SK are stored in environment variables for authentication. Before running this example, set environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment
        String ak = System.getenv("CLOUD_SDK_AK");
        String sk = System.getenv("CLOUD_SDK_SK");
        String projectId = "{project_id}";

        ICredential auth = new BasicCredentials()
                .withProjectId(projectId)
                .withAk(ak)
                .withSk(sk);

        CceClient client = CceClient.newBuilder()
                .withCredential(auth)
                .withRegion(CceRegion.valueOf("<YOUR REGION>"))
                .build();
        DeleteClusterRequest request = new DeleteClusterRequest();
        request.withClusterId("{cluster_id}");
        try {
            DeleteClusterResponse response = client.deleteCluster(request);
            System.out.println(response.toString());
        } catch (ConnectionException e) {
            e.printStackTrace();
        } catch (RequestTimeoutException e) {
            e.printStackTrace();
        } catch (ServiceResponseException e) {
            e.printStackTrace();
            System.out.println(e.getHttpStatusCode());
            System.out.println(e.getRequestId());
            System.out.println(e.getErrorCode());
            System.out.println(e.getErrorMsg());
        }
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# coding: utf-8

import os
from huaweicloudsdkcore.auth.credentials import BasicCredentials
from huaweicloudsdkcce.v3.region.cce_region import CceRegion
from huaweicloudsdkcore.exceptions import exceptions
from huaweicloudsdkcce.v3 import *

if __name__ == "__main__":
    # The AK and SK used for authentication are hard-coded or stored in plaintext, which has great security risks. It is recommended that the AK and SK be stored in ciphertext in configuration files or environment variables and decrypted during use to ensure security.
    # In this example, AK and SK are stored in environment variables for authentication. Before running this example, set environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment
    ak = os.environ["CLOUD_SDK_AK"]
    sk = os.environ["CLOUD_SDK_SK"]
    projectId = "{project_id}"

    credentials = BasicCredentials(ak, sk, projectId)

    client = CceClient.new_builder() \
        .with_credentials(credentials) \
        .with_region(CceRegion.value_of("<YOUR REGION>")) \
        .build()

    try:
        request = DeleteClusterRequest()
        request.cluster_id = "{cluster_id}"
        response = client.delete_cluster(request)
        print(response)
    except exceptions.ClientRequestException as e:
        print(e.status_code)
        print(e.request_id)
        print(e.error_code)
        print(e.error_msg)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
package main

import (
	"fmt"
	"github.com/huaweicloud/huaweicloud-sdk-go-v3/core/auth/basic"
    cce "github.com/huaweicloud/huaweicloud-sdk-go-v3/services/cce/v3"
	"github.com/huaweicloud/huaweicloud-sdk-go-v3/services/cce/v3/model"
    region "github.com/huaweicloud/huaweicloud-sdk-go-v3/services/cce/v3/region"
)

func main() {
    // The AK and SK used for authentication are hard-coded or stored in plaintext, which has great security risks. It is recommended that the AK and SK be stored in ciphertext in configuration files or environment variables and decrypted during use to ensure security.
    // In this example, AK and SK are stored in environment variables for authentication. Before running this example, set environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment
    ak := os.Getenv("CLOUD_SDK_AK")
    sk := os.Getenv("CLOUD_SDK_SK")
    projectId := "{project_id}"

    auth := basic.NewCredentialsBuilder().
        WithAk(ak).
        WithSk(sk).
        WithProjectId(projectId).
        Build()

    client := cce.NewCceClient(
        cce.CceClientBuilder().
            WithRegion(region.ValueOf("<YOUR REGION>")).
            WithCredential(auth).
            Build())

    request := &model.DeleteClusterRequest{}
	request.ClusterId = "{cluster_id}"
	response, err := client.DeleteCluster(request)
	if err == nil {
        fmt.Printf("%+v\n", response)
    } else {
        fmt.Println(err)
    }
}

For SDK sample code of more programming languages, see the Sample Code tab in API Explorer. SDK sample code can be automatically generated.

Status Codes

Status Code

Description

200

The job for deleting a cluster is successfully delivered.

Error Codes

See Error Codes.