缺陷管理 CodeArts Defect

缺陷管理 CodeArts Defect

CodeArts Defect基于华为多年沉淀的质量运营管理经验,内置结构化缺陷流程、缺陷跨组织协同、差异化作业流程编排、多维度缺陷度量报表,为团队提供统一、高效、风险可视的缺陷跟踪平台,确保每一个缺陷都被高质高效闭环

CodeArts Defect基于华为多年沉淀的质量运营管理经验,内置结构化缺陷流程、缺陷跨组织协同、差异化作业流程编排、多维度缺陷度量报表,为团队提供统一、高效、风险可视的缺陷跟踪平台,确保每一个缺陷都被高质高效闭环

    深度学习中数据集质量 更多内容
  • 深度学习模型预测

    h5"。 参数说明 表1 参数说明 参数 是否必选 说明 field_name 是 数据在数据流的字段名。 图像分类field_name类型需声明为ARRAY[TINYINT]。 文本分类field_name类型需声明为String。 model_path 是 模型存放在OBS上的完整路径,包括模型结构和模型权值。

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    h5"。 参数说明 表1 参数说明 参数 是否必选 说明 field_name 是 数据在数据流的字段名。 图像分类field_name类型需声明为ARRAY[TINYINT]。 文本分类field_name类型需声明为String。 model_path 是 模型存放在OBS上的完整路径,包括模型结构和模型权值。

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    理数据,通过内置规则的数据选择可以进一步提升旧模型精度。 数据增强: 数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模

    来自:帮助中心

    查看更多 →

  • 通话中质量监测

    通话质量监测 功能描述 加入频道后,SDK会每隔2秒自动触发通话质量相关的回调,上报当前本地和远端的音视频统计信息。 接口调用流程 实现通话质量监测 通话质量上报 onNetworkQualityNotify,房间内客户端网络质量实时上报,默认开启,每2s上报一次,两人以上才会回调。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    觉任务,则需要图像或视频数据。 数据预处理:数据预处理是数据准备过程的重要环节,旨在提高数据质量和适应模型的需求。常见的数据预处理操作包括: 去除重复数据:确保数据集中每条数据的唯一性。 填补缺失值:填充数据的缺失部分,常用方法包括均值填充、中位数填充或删除缺失数据。 数据标

    来自:帮助中心

    查看更多 →

  • 方案概述

    自主可控:与其它国产工业软件协同,以模型纬度定义在产品生命周期过程的数据信息,数据及解析存储兼容Part&BOM、3PR模型、2D/3D图纸数模(机)、ECAD图纸(电)、二进制软件(软)等信息; AI驱动能力:行业Know-how+数据壁垒构筑AI智能化内核,将整个工业数据集当做特征生成工业Pretraine

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    invalid_device fstab的设备检查 当前实例的/etc/fstab文件配置的某个设备不存在,可能会导致实例无法启动。 guestos.filesystem.device_mount_failure fstab的设备挂载状态检查 该实例存在未在/etc/fstab配置自动挂载的云盘,可能会导致实例无法启动。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    样本对齐,支持使用新对齐的结果,如图5所示;也支持复用隐私求交作业通过这两个数据集计算得到的结果,如图6所示。 图5 使用新对齐结果 图6 复用隐私求交作业的结果 (可选步骤)进行特征选择,此步骤要求数据已经对齐,即两方数据集每一行的数据都是一一对应的。 单击数据集按钮切换数据集,勾选特征作为模型训练的指定特征

    来自:帮助中心

    查看更多 →

  • 准备声音分类数据

    景。 训练集的数据质量对于模型的精度有很大影响,建议训练集音频的采样率和采样精度保持一致。 标注质量对于最终的模型精度有极大的影响,标注过程尽量不要出现误标情况。 音频标注涉及到的标注标签和声音内容只支持中文和英文,不支持小语种。 数据上传至OBS 在本文档,采用通过OBS管理控制台将数据上传至OBS桶。

    来自:帮助中心

    查看更多 →

  • 基本概念

    e-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角的图标的“数据处理”菜单下面的数据处理算子。 模型包 将模型训练生成的模型进行打包。可以基于模型包生成SHA256校验码、创建模型验证服务、重训练

    来自:帮助中心

    查看更多 →

  • 数据集标注场景介绍

    增强模型的准确性与鲁棒性:准确的标注数据能够帮助模型更好地学习数据的潜在模式和规律,进而提高模型的性能、准确性和鲁棒性。 节省时间与成本:AI预标注可以显著减少人工干预,提高标注的效率和一致性,帮助用户节省标注成本和时间,尤其是在大规模数据集的处理过程。 总的来说,数据标注是数据工程不可或缺的一环,通过高效、准确的标注过程,ModelArts

    来自:帮助中心

    查看更多 →

  • 数据质量

    数据质量 质量作业和对账作业有什么区别? 如何确认质量作业或对账作业已经阻塞? 如何手工重启阻塞的质量作业或对账作业? 怎样查看质量规则模板关联的作业? 用户在执行质量作业时提示无 MRS 权限怎么办?

    来自:帮助中心

    查看更多 →

  • 迁移学习

    请按照本节的操作顺序在算法工程完成数据迁移,若其中穿插了其他数据操作,需要保证有前后衔接关系的两个代码框的dataflow名字一致。 绑定源数据 进入迁移数据JupyterLab环境编辑界面,运行“Import sdk”代码框。 单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 特征准备

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 数据质量

    “编辑”按钮。 图15 质量作业5 通过将数据模型具体字段与数据标准已定义的数据质量规则、码表、枚举值、长度等内容,来基于统一数据标准监控表的数据质量。 图16 质量作业6 发布模型,配置了质量规则后,需要发布模型才能生成质量作业。 首先,需要确保质量作业开关是开着的,在配置

    来自:帮助中心

    查看更多 →

  • 数据质量

    数据质量 质量检查任务 质量检查报告

    来自:帮助中心

    查看更多 →

  • 数据质量

    数据质量 业务指标监控(待下线) 数据质量监控 使用教程

    来自:帮助中心

    查看更多 →

  • 功能介绍

    功能介绍 系统登录 在浏览器输入https://engine.piesat.cn/ai/samplelabel/#/链接,进入系统登录界面,如下图所示。 图1 系统登录界面1 图2 系统登录界面2 系统默认登录方式为密码登录。输入手机号码/邮箱/帐号、登录密码、字符验证码,单击

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了