AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习有哪几个方面 更多内容
  • 什么是OptVerse

    天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列竞争力的行业解决方案。 使用要求 OptVerse以开放API(Application Programming

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 概述

    天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列竞争力的行业解决方案。 OptVerse以开放API(Application Programming

    来自:帮助中心

    查看更多 →

  • 什么是自动学习?

    什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 基本概念

    特征操作主要是对数据集进行特征处理。 在旧版体验式开发模式下,模型训练服务支持的特征操作重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角的图标中的“数据处理”菜单下面的数据处理算子。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    JSON 每个算法其各自的参数列表,包括初始化、最优化、正则项等参数。 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的

    来自:帮助中心

    查看更多 →

  • 配置云连接服务一共有哪几个步骤?

    配置云连接服务一共有哪几个步骤? 配置云连接服务,需要四个步骤,并且均基于管理控制台云连接服务的在线操作,即配置即用。 创建云连接实例:一个云连接实例,可以理解为后续会实现互通的一个私网网络,加载在同一个云连接实例下的网络实例相互之间能够互通。 加载网络实例:将需要互通的网络实例

    来自:帮助中心

    查看更多 →

  • 配置云连接服务一共有哪几个步骤?

    配置云连接服务一共有哪几个步骤? 配置云连接服务,需要四个步骤,并且均基于管理控制台云连接服务的在线操作,即配置即用。 创建云连接实例:一个云连接实例,可以理解为后续会实现互通的一个私网网络,加载在同一个云连接实例下的网络实例相互之间能够互通。 加载网络实例:将需要互通的网络实例

    来自:帮助中心

    查看更多 →

  • 会务通的资讯内容可以在哪几个地方呈现?

    会务通的资讯内容可以在哪几个地方呈现? 会务管理员通过通知中心,会务群组及小微推送会务资讯。 父主题: 应用

    来自:帮助中心

    查看更多 →

  • 配置云连接服务一共有哪几个步骤?

    配置云连接服务一共有哪几个步骤? 配置云连接服务,需要四个步骤,并且均基于管理控制台云连接服务的在线操作,即配置即用。 创建云连接实例:一个云连接实例,可以理解为后续会实现互通的一个私网网络,加载在同一个云连接实例下的网络实例相互之间能够互通。 加载网络实例:将需要互通的网络实例

    来自:帮助中心

    查看更多 →

  • HCIA-AI

    200USD 考试内容 HCIA-AI V3.0考试包含人工智能基础知识、机器学习深度学习、昇腾AI体系、华为AI全栈全场景战略知识等内容。 知识点 人工智能概览 10% 机器学习概览 20% 深度学习概览 20% 业界主流开发框架 12% 华为AI开发框架MindSpore 8%

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于 自然语言处理 (NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。

    来自:帮助中心

    查看更多 →

  • 方案概述

    、合理,有助于提高管制策略的有效性和针对性。 闭环管理与自主学习机制:国蓝中天实现了污染摸排流程化反馈数据的闭环管理与自主学习。这种机制使得管制系统能够不断学习和优化,进一步提高污染管治的有效性。通过持续的数据反馈和学习,系统能够不断完善自身,适应不断变化的污染状况。

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    高负载(资源不足)的情况下,会出现多个作业各自分配到部分资源运行一部分Pod,而又无法正执行完成的状况,从而造成资源浪费。以下图为例,集群4块GPU卡,TFJob1和TFJob2作业各自有4个Worker,TFJob1和TFJob2各自分配到2个GPU。但是TFJob1和TFJ

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部 服务器 错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了