中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    深度学习依托大量数据 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 加解密大量数据

    加解密大量数据 场景说明 当有大量数据(例如:照片、视频或者数据库文件等)需要加解密时,用户可采用信封加密方式加解密数据,无需通过网络传输大量数据即可完成数据加解密。 加密和解密原理 大量数据加密 图1 加密本地文件 说明如下: 用户需要在KMS中创建一个用户主密钥。 用户调用K

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 示例2:加解密大量数据

    示例2:加解密大量数据 场景描述 在大量数据加解密的场景,您的程序会经常使用到对数据密钥的加解密。 大量数据加密的流程如下: 在KMS中创建一个用户主密钥。 调用KMS的“create-datakey”接口创建数据加密密钥。用户得到一个明文的数据加密密钥和一个密文的数据加密密钥。其

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    率。 内置大量生物医疗领域标准分析流程,并结合华为特有的高性能云计算,多样性算力,大数据等技术加速计算过程。 支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    则的数据选择可以进一步提升旧模型精度。 数据增强: 数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 产品优势

    海量训练数据 盘古大模型依托海量且多样化的训练数据,涵盖从日常对话到专业领域的广泛内容,帮助模型更好地理解和生成自然语言文本,适用于多个领域的业务应用。这些数据不仅丰富多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。 AI开发的基本流程 AI开

    来自:帮助中心

    查看更多 →

  • 盘古自然语言大模型的适用场景有哪些

    语言处理下游任务的基础模型。学术界和工业界的实践证明,随着模型参数规模的增加, 自然语言处理 下游任务的效果显著提升,这得益于海量数据大量算力以及深度学习的飞跃发展。 基于自然语言处理大模型的预训练模型,可以根据业务需求开发出诸如营销文案生成、阅读理解、智能对话和代码生成等应用功能。

    来自:帮助中心

    查看更多 →

  • AI Gallery功能介绍

    的模型训练与部署成本,这往往成为创意落地的阻碍。通过大量开发者实践,针对主流昇腾云开源大模型,沉淀最佳的算力组合方案,为开发者在开发模型的最后一步,提供最佳实践的算力方案、实践指南和文档,节省开发者学习和试错资金成本,提升学习和开发效率。 父主题: 功能介绍

    来自:帮助中心

    查看更多 →

  • 什么是图像搜索

    服务API进行数据的入库和搜索,帮助用户构建托管式的场景化搜索服务,打造智能化业务系统,提升业务效率。 产品优势 搜索高精度 依托华为云盘古大模型,海量数据学习迭代,具备行业领先的搜索精度。 服务高性能 分布式搜索服务架构,自研向量检索引擎,企业级稳定性,百亿数据毫秒级响应。 定制化服务

    来自:帮助中心

    查看更多 →

  • 什么是视频智能分析服务 (VIAS)

    的多模态数据分析能力,保证园区场景业务的高效闭环。 面向泛园区场景提供多种智能分析算法,基于深度学习等领先技术,保证人、车辆、事件、行为的高精度感知和处理。 通过视频分析、图像处理和自然语言处理技术,对园区和城市治理中的视频、图片和文本数据进行多模态联合分析,充分挖掘数据潜在关联性。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据J

    来自:帮助中心

    查看更多 →

  • 学习项目

    别二维码进行学习 操作路径:培训-学习-学习项目-更多-分享 图21 分享1 图22 分享2 数据监控 通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计的是以任务形式分派的学员学习数据 自学记录统计的是学员在知识库进行自学的学习数据

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 方案概述

    用户token数据,题库、课件等热点数据的存储 使用分布式文档数据库(Mongdb),用于自动保存考试答题记录,课件学习记录 使用云数据库RDS,用于存储系统业务数据 使用 对象存储OBS ,用于存储视频、文档、图片等资源 使用云备份CBR,用于对重要的磁盘、数据数据定期备份 系统组成

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。 特征挖掘十分重要,尤其是具有强表达能力的特征,可以抵过大量的弱表达能力的特征。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了