华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习样本库标注 更多内容
  • 功能介绍

    同类别样本的分布情况,判断样本集的分布平衡性,并可在组织内共享数据集。 图10 数据均衡性分析 图11 共享样本数据管理 全流程可视化自主训练,用户可选择网络结构、数据集利用云端算力进行自动学习,也可以利用notebook进行算法开发;支持基于预训练模型进行模型的自主训练与迭代优化,提高模型训练效率和精度。

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 查询单个智能标注样本的信息

    Worker objects 样本分配的标注人列表,记录这张样本分给了哪些团队成员,用于团队标注。 labels Array of SampleLabel objects 样本标签列表。 metadata SampleMetadata object 样本metadata属性键值对。

    来自:帮助中心

    查看更多 →

  • 批量更新团队标注样本的标签

    String 视频标注途径,用于区分标签是人工标注的还是自动标注的。可选值如下: human:人工标注 auto:自动标注 id 否 String 标签ID。 name 否 String 标签名。 property 否 SampleLabelProperty object 样本标签的属性键值对,如物体形状、形状特征等。

    来自:帮助中心

    查看更多 →

  • 查询团队标注的样本信息

    Worker objects 样本分配的标注人列表,记录这张样本分给了哪些团队成员,用于团队标注。 labels Array of SampleLabel objects 样本标签列表。 metadata SampleMetadata object 样本metadata属性键值对。

    来自:帮助中心

    查看更多 →

  • 管理样本库

    图1 进入样本管理页面 在样本管理页面,单击目录上的,然后在光标移动到目录上,单击后,输入分类名用于新增样本分类。分类名称只能包含英文字母、数字、“_”,且长度不超过64个字符,超出部分将被截断。样本分类最多支持10层(不包含“全部”层)。 图2 新增样本分类 样本分类创

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据清洗是在数据校验的基础上,对数据进行一致性检查,处理一些无效值。例如在深度学习领域,可以根据用户输入的正样本和负样本,对数据进行清洗,保留用户想要的类别,去除用户不想要的类别。 数据选择:数据选择一般是指从全量数据中选择数据子集的过程。 数据可以通过相似度或者深度学习算法进行选择。数据选择可以避免人工采集图片

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例筛选等多种手段进行智能标注,降低人工标注量,帮助用户找到难例。 “预标注”表示选择用户模型管理里面的模型进行智能标注。 “自动分组”是指

    来自:帮助中心

    查看更多 →

  • 训练物体检测模型

    训练物体检测模型 自动学习物体检测项目,在图片标注完成后,通过模型训练得到合适的模型版本。 操作步骤 在新版自动学习页面,单击项目名称进入运行总览页面,单击“数据标注”节点的“实例详情”进入数据标注页面,完成数据标注。 图1 完成数据标注 返回新版自动学习页面,单击数据标注节点的“继续运

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    recall:召回率 被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    recall:召回率 被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 分页查询智能任务列表

    分页查询智能任务列表,包括“智能标注”和“自动分组”两大类智能任务。可通过指定“type”参数来单独查询某类任务的列表。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系

    来自:帮助中心

    查看更多 →

  • 训练图像分类模型

    召回率 被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision 精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy 准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 查询智能标注的样本列表

    Worker objects 样本分配的标注人列表,记录这张样本分给了哪些团队成员,用于团队标注。 labels Array of SampleLabel objects 样本标签列表。 metadata SampleMetadata object 样本metadata属性键值对。

    来自:帮助中心

    查看更多 →

  • 获取智能任务的信息

    0:导出到OBS 1:导出到样本属性 表3 SmartTaskConfig 参数 参数类型 描述 algorithm_type String 自动标注的算法类型。可选值如下: fast:快速型,仅使用已标注样本进行训练 accurate:准确型,除已标注样本外,会额外使用未标注样本做半监督训练

    来自:帮助中心

    查看更多 →

  • 数据集版本发布失败

    关闭归档数据直读功能 ModelArts.4711 数据集标注样本数满足算法要求 每个类别至少包含5张以上图片。 ModelArts.4342 标注信息不满足切分条件 出现此故障时,建议根据如下建议,修改标注数据后重试。 多标签的样本(即一张图片包含多个标签),至少需要有2张。如果启动

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 创建智能标注作业

    作列的“智能标注”启动智能标注作业。 在弹出的“启动智能标注”对话框中,选择智能标注类型,可选“主动学习”或者“预标注”,详见表1和表2。 表1 主动学习 参数 说明 智能标注类型 “主动学习”。“主动学习”表示系统将自动使用半监督学习、难例筛选等多种手段进行智能标注,降低人工标注量,帮助用户找到难例。

    来自:帮助中心

    查看更多 →

  • 训练模型

    在“参数配置”填写“学习率”、“训练轮次”和“分批训练样本数”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “分批训练样本数”又叫批尺寸(Batch Size),指一次训练所抓取的数据样本数量,影响训练速度及模型优化效果。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了