AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练框架 更多内容
  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 排序策略

    保存根路径 单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型和日志文件保存在该路径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    Turbo高性能,加速训练过程 训练数据集高速读取,避免GPU/NPU因存储I/O等待产生空闲,提升GPU/NPU利用率。 大模型TB级Checkpoint文件秒级保存和加载,减少训练任务中断时间。 3 数据导入导出异步化,不占用训练任务时长,无需部署外部迁移工具 训练任务开始前将数据从OBS导入到SFS

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    选择训练数据中的部分时间数据,训练数据集尽可能多一些。 验证集 选择验证集中的部分时间数据,验证集数据不能跟训练集数据重合。 层次 设置训练数据的层次信息。在“预训练”场景中,可以添加或去除高空层次,训练任务将根据配置的层次信息重新训练模型。 高空变量 设置训练数据的高空变量信息。在“预训练”场景中,

    来自:帮助中心

    查看更多 →

  • 创建CV大模型训练任务

    选择所需微调的基础模型。 训练参数 数据集 训练数据集。 自定义L1预训练模型目录 自定义预训练模型所在的OBS路径。 训练轮数 表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 是否使用自定义L1预训练模型 是否使用自定义预训练模型进行训练,模型为用户与服务共建,详情请联系客服。

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deeps

    来自:帮助中心

    查看更多 →

  • 配置&编译框架简介

    配置&编译框架简介 Huawei LiteOS使用Kconfig文件配置系统,基于GCC/Makefile实现组件化编译。 不论是Linux下使用make menuconfig命令配置系统,还是Windows下使用Huawei LiteOS Studio进行图形化配置,Huawei

    来自:帮助中心

    查看更多 →

  • 如何在代码中打印GPU使用信息

    gpu.memoryUtil*100, gpu.memoryTotal)) 注:用户在使用pytorch/tensorflow等深度学习框架时也可以使用框架自带的api进行查询。 父主题: 更多功能咨询

    来自:帮助中心

    查看更多 →

  • Standard功能介绍

    Standard功能介绍 Standard自动学习 Standard Workflow Standard数据管理 Standard开发环境 Standard模型训练 Standard模型部署 Standard资源管理 Standard支持的AI框架 父主题: 功能介绍

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deeps

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deeps

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    等技术加速计算过程。 支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。 成

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    力,保障用户训练作业的长稳运行 提供训练作业断点续训与增量训练能力,即使训练因某些原因中断,也可以基于checkpoint接续训练,保障需要长时间训练的模型的稳定性和可靠性,避免重头训练耗费的时间与计算成本 支持训练数据使用SFS Turbo文件系统进行数据挂载,训练作业产生的中间和结果等数据可以直接高速写入到SFS

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    重新训练 对第一次训练无影响,仅影响任务重跑。 “是”:清空上一轮的模型结果后重新开始训练。 “否”:导入上一轮的训练结果继续训练。适用于欠拟合的情况。 批量大小 一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • 成长地图

    CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

  • 数据治理框架

    数据治理 框架 数据治理框架 数据治理模块域 数据治理各模块域之间的关系

    来自:帮助中心

    查看更多 →

  • 数据治理框架

    数据治理框架 数据治理框架制定如下: 图1 数据治理框架 父主题: 数据治理框架

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了