华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习提取图像特征之一 更多内容
  • 提取接口

    Interface对话框中,提供提取接口的名称和包,选择要提取的类成员。在JavaDoc选项中,选择是将JavaDoc注释移动或复制到提取的接口,还是保持原样。 单击Refactor以应用重构。 示例 例如,让我们基于提取ExtractImpl类的print方法创建一个新的提取ImplInterface接口。

    来自:帮助中心

    查看更多 →

  • 提取委托

    Delegate对话框中,提供重构参数。 提供提取类的名称、包和目标目录。 选中Create nested class复选框以在当前类中创建新类。 选中Generate accessors复选框,为提取的字段生成getter方法。 选中Extract as enum复选框,将提取的类创建为枚举类。如果源类包含静态最终字段static

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    分解机每个特征对其他域的隐向量都一致,而域感知因子分解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而

    来自:帮助中心

    查看更多 →

  • 特征操作

    检查“已选择特征”是否为用户选择的特征列。 配置“变换特征数”,保留指定“变换特征数”的特征列。 单击“确定”,执行信息熵。 在“特征操作流总览”区域会新增一个“信息熵”节点。 新增特征 新增特征支持用户基于已有的特征列,按照样本数据行的维度,通过求和、求均值,构造出新的特征列。例如,两个特征列ID1(2

    来自:帮助中心

    查看更多 →

  • 特征画像

    。这些类别,对应到后面的特征选择、算法推荐,会有不同的策略,有效提升模型的构建效率。 单击“选择数据”左下方的“特征画像”。 新增“特征画像”内容,如图1所示。 图1 特征画像 单击“特征画像”代码框左侧的图标,运行代码。 通过运行结果左侧两个图可以直观的看一下原始数据和数据的密

    来自:帮助中心

    查看更多 →

  • 呼叫特征

    呼叫特征 表1 呼叫特征说明 值 说明 0 普通客户呼叫 1 来自话务员 2 长途客户呼叫 3 CTI收到网络路由实呼后发起的路由 4 国际长途来话 40 预约呼出 41 预占用呼出 42 预连接呼出 43 虚呼入呼出 44 预览呼出 45 回呼请求 51 内部求助 父主题: 附录

    来自:帮助中心

    查看更多 →

  • 基本概念

    可支持用户进行机器学习深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。 在旧版体验

    来自:帮助中心

    查看更多 →

  • 应用场景

    应用场景 内容审核 -图像 内容审核-图像有以下应用场景: 视频直播 在互动直播场景中,成千上万个房间并发直播,人工审核直播内容几乎不可能。基于图像审核能力,可对所有房间内容实时监控,识别可疑房间并进行预警。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:视频直播响应速度小于0

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 什么是图像分类和物体检测?

    什么是图像分类和物体检测? 图像分类是根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。简单的说就是识别一张图中是否是某类/状态/场景,适合图

    来自:帮助中心

    查看更多 →

  • 批量更新样本标签

    4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现图像分类

    使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 执行作业

    横向评估型作业在作业配置页面单击“保存”按钮后,可以直接单击“执行”按钮。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的作业,单击“执行”,系统自动跳转到“历史作业”页面。 图1 执行作业 等待执行完成,在“历史作

    来自:帮助中心

    查看更多 →

  • 批量更新团队标注样本的标签

    4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    提升业务效率。 媒资图像标签 基于深度学习技术,准确识别图像中的视觉内容,提供多种物体、场景和概念标签,具备目标检测和属性识别等能力帮助客户准确识别和理解图像内容。主要面向媒资素材管理、内容推荐、广告营销等领域。 图1 媒资图像标签示例图 名人识别 利用深度神经网络模型对图片内容

    来自:帮助中心

    查看更多 →

  • 排序策略

    路径不能包含中文。 核函数特征交互神经网络-PIN 核函数特征交互神经网络是深度网络因子分解机的改进版本,深度网络因子分解机通过向量点乘来计算特征之间的关系,而核函数特征交互神经网络使用不同的核(kernel)来对特征交互进行建模,以此来计算两个域中特征的相互关系,其中核的种类包

    来自:帮助中心

    查看更多 →

  • 查询单个样本信息

    4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 更新团队标注验收任务状态

    4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 特征工程中已经预置了两个特征处理工程,这里暂不使用,会提供端到端的操作流程,帮助用户快速熟悉特征工程界面操作。 如果需要了解特征工程操作详情,可查看模型训练服务《用户指南》中的“特征工程”章节内容。 无故障硬盘训练数据集特征处理 单击菜单栏中的“特征工程”,进入特征工程首页,如图1所示。

    来自:帮助中心

    查看更多 →

  • 特征工程

    行为表。 全局特征信息文件 用户在使用特征工程之前,需要提供一份全局的特征信息文件,后续的特征工程、在线模块都会用到该文件。 文件数据信息请参见全局特征信息文件。 当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 保留已有宽表

    来自:帮助中心

    查看更多 →

  • 特征操作接口

    signature_type 是 String 特征类型。 最小长度:1 最大长度:150 signature_name 否 String 特征名称。 signature_attributes 否 Array of 表4 objects 特征属性。 表4 MetadataAttributeRequest

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了