AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习书籍 源码 更多内容
  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 查看源码成分分析扫描详情

    查看源码成分分析扫描详情 该任务指导用户通过开源治理服务查看源码成分分析扫描结果。 前提条件 已获取管理控制台的登录账号与密码。 已执行扫描任务。 操作步骤 登录开源治理服务控制台。 在左侧导航栏,单击“软件成分分析 > 源码成分分析”。 在“源码成分分析”页面,可看到全部添加过

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 使用源码部署天气预报微服务

    使用源码部署天气预报微服务 源码部署前准备 源码部署微服务 父主题: 使用ServiceStage托管和治理天气预报微服务应用

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    异如表1所示。 表1 机器人版本说明 功能列表 专业版 旗舰版 管理问答语料 √ √ 实体管理 √ √ 问答模型训练 轻量级深度学习 √ √ 重量级深度学习 - √ 调用 问答机器人 √ √ 问答诊断 √ √ 运营面板 √ √ 高级设置 基本信息 √ √ 知识共享 √ √ 应用授权

    来自:帮助中心

    查看更多 →

  • 与其他服务的关系

    eArts、Gitee、GitHub、GitLab、Bitbucket),绑定源码仓库后,可以直接从源码仓库拉取源码进行构建。 ServiceStage集成了部署源管理功能,可以将构建完成的软件包(或者镜像包)归档对应的仓库和组织。 ServiceStage集成了相关的基础资源(

    来自:帮助中心

    查看更多 →

  • 与其他云服务之间的关系

    间件服务进行了深度整合,全力打造功能齐全的一站式应用云平台。 使用CAE可以系统的体验到众多云服务的功能精髓。 CAE实现了与源码仓库的对接(如CodeArts、GitHub、Gitee、GitLab、Bitbucket),绑定源码仓库后,可以直接从源码仓库拉取源码进行构建。 C

    来自:帮助中心

    查看更多 →

  • 可信联邦学习作业

    可信联邦学习作业 概述 创建横向训练型作业 横向联邦训练作业对接MA 创建横向评估型作业 创建纵向联邦学习作业 执行作业 查看作业计算过程和作业报告 删除作业 安全沙箱机制

    来自:帮助中心

    查看更多 →

  • 应用场景

    准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:视频直播响应速度小于0.1秒。 在线商城 智能审核商家/用户上传图像,高效识别并预警不合规图片,防止涉黄、涉暴类图像发布,降低人工审核成本和业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。

    来自:帮助中心

    查看更多 →

  • C++源码编译找不到stdlib.h

    原因:系统中 C++ 头文件包含路径不当,导致cstdlib中执行“#include_next ”时,找不到系统 libc 中的 stdlib.h 。解决方案:修改los_config.mk 中LITEOS_CXXINCLUDE和LITEOS_LIBC_INCLUDE 顺序:LITEOS_LIBC_INCLUDE应在L

    来自:帮助中心

    查看更多 →

  • 成长地图

    CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

  • 获取源码包、ODBC包以及依赖库

    获取源码包、ODBC包以及依赖库 基于ODBC开发所需的包,依赖库和头文件以及其获取方式如表1所示。 表1 ODBC应用程序开发环境准备 所需资源 获取方式 unixODBC源码包 unixODBC源码包获取参考地址:https://www.unixodbc.org/unixODBC-2

    来自:帮助中心

    查看更多 →

  • 获取源码包、ODBC包以及依赖库

    获取源码包、ODBC包以及依赖库 基于ODBC开发所需的包,依赖库和头文件以及其获取方式如表1所示。 表1 ODBC应用程序开发环境准备 所需资源 获取方式 unixODBC源码包 unixODBC源码包获取参考地址:https://www.unixodbc.org/unixODBC-2

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    等技术加速计算过程。 支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。 成

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱和IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 查询并导出课程学习记录

    查询并导出课程学习记录 前提条件 用户具有“查询课程记录”权限 操作步骤: 登录ISDP系统,选择“作业人员->学习管理->学习记录”,查询课程学习记录 点击顶部“课程学习记录”可以在这里对学习记录进行查询以及导出,筛选说明如下表: 图1 课程记录查询条件 表1 “课程学习记录”筛选项

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部 服务器 错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了